LlamaTune: Sample-Efficient DBMS Configuration Tuning

Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas Müller, Carlo Curino, Shivaram Venkataraman
DBMS Configuration Tuning

Tuning DBMS knob values is essential for achieving high-performance. Default values are sub-optimal; often chosen for compatibility rather than performance.

Default Configuration

- bgwriter_lru_maxpages: 100
- commit_delay: 0
- deadlock_timeout: 1000ms
- default_statistics_target: 100
- effective_cache_size: 4GB
- random_page_cost: 1.0
- wal_sync_method: fdatasync
- work_mem: 4MB

Tuned Configuration

- bgwriter_lru_maxpages: 20
- commit_delay: 150
- deadlock_timeout: 4500ms
- default_statistics_target: 30
- effective_cache_size: 16GB
- random_page_cost: 1.25
- wal_sync_method: open_fdatasync
- work_mem: 16MB

Properly tuned database systems can achieve 3-6x higher throughput [1]

Automated DBMS Configuration Tuning

DBMSs increasing complexity made this task harder for DBAs

- Hundreds of configuration knobs
- Knob heterogeneity (discrete, continuous, categorical)
- Unknown interactions among different knobs (and their values…)

2005
- SQL Server (IEEE'05)
- IBM DB2 (VLDB'06)

2010
- iTuned (VLDB '09)

2015
- OtterTune (SIGMOD '17)
- CGPTune (VLDB '21)
- UDO* (VLDB '21)
- BestConfig (IEEE' 17)
- ResTune (SIGMOD '21)

2020
- CDBTune (SIGMOD '19)
- QTune (VLDB '19)
- DB-BERT (SIGMOD '22)
- ONLINE TUNE (SIGMOD '22)
Motivation

Sample-efficiency is a crucial requirement to use tuners on diverse workloads.

Even state-of-the-art optimizers need ~100 samples (>10 hours) to converge to optimal config, when tuning new workloads without any prior knowledge.

Recent DBMS configuration tuning experimental study / comparison [2]

#1: SMAC the best overall (BO-based \w Random Forest model)
#2: DDPG performed good when tuning ~20 knobs (RL-based, CDBTune)

High-dimensional configuration search space is a major contributing factor.

Can we leverage DBMS-specific insights to improve tuning performance?

LlamaTune Overview

Tuner design that leverages *domain knowledge* to improve the *sample efficiency* of the underlying configuration optimizers.

- **Low-Dimensional Search Space Tuning**
- **Special Knob Values Handling**
- **Knob Values Bucketization**

Reduces configuration evaluations by up to **11x**; up to **21%** higher *throughput*.
LlamaTune Overview

Tuner design that leverages *domain knowledge* to improve the *sample efficiency* of the underlying configuration optimizers

- Low-Dimensional Search Space Tuning
- Special Knob Values Handling
- Knob Values Bucketization

Reduces configuration evaluations by up to **11x**; up to **21%** higher *throughput*
Low-Dimensional Tuning – Important Knobs

Tuning few important knobs can yield optimal DBMS performance

PostgreSQL, 90 knobs, YCSB-A (50%/50% read/write), SF=20, SMAC, average of 5 runs
Low-Dimensional Tuning – Important Knobs

Tuning few **important** knobs can yield optimal DBMS performance

PostgreSQL, 90 knobs, YCSB-A (50%/50% read/write), SF=20, SMAC, average of 5 runs
Low-Dimensional Tuning – Important Knobs

Tuning few **important** knobs can yield optimal DBMS performance

PostgreSQL, 90 knobs, YCSB-A (50%/50% read/write), SF=20, SMAC, average of 5 runs

- **Higher** Final Throughput
- **Faster** Convergence to the optimal config. (evaluate fewer configurations to reach baseline optimal performance)

Tuning **smaller** search space (8 vs 90 knobs) can realize gains!
Low-Dimensional Tuning – Important Knobs

Tuning few **important** knobs can yield optimal DBMS performance

PostgreSQL, 90 knobs, YCSB-A (50%/50% read/write), SF=20, SMAC, average of 5 runs

- Ranking-based methods that **identify important knobs** are slow, inaccurate
- **SHAP fails** to identify all important knobs
- Not always **reusable** across workloads! (e.g., knobs identified as important for YCSB-A do not perform well for TPC-C, when tuned)
Low-Dimensional Tuning

Use fewer knobs (dimensions) to model the DBMS performance behavior.
Synthetic Low-Dimensional Search Space

Combine multiple physical DBMS knobs to create few synthetic knobs

- No actual meaning themselves – their values determine the real DBMS knob values
- Optimizer now tunes these synthetic knobs (i.e., low-dimensional search space)

How to construct this mapping from low-dim space to high-dim one?
Low-Dimensional Projections

Theoretically-sound proposals from the ML / BO community

- Assume low-dim space has d dimensions; high-dim space has D
- Define a projection matrix A, to map points from low-dim to high-dim space

Input: estimate of the number of important dimensions (knobs) [d]

Output: definition of low-dim search space & projection matrix [$d \rightarrow D$]

$v_1 = [0.2, 0.4]$

$v_2, v_3, ...$

$u_1 = Av_1 = [0.3, 0.8, 0.2]$

$u_2 = Av_2, u_3 = Av_3, ...$
Low-Dimensional Projections

Hashing-Enhanced Subspace BO (HesBO) [3]

- Random one-to-many linear projection
- Based on Count-Sketch projection
- Adequately preserves the characteristics of up to \(d\) (important) dimensions (e.g., pairwise distances)

Low-dim space dimensions \([d]\) \(>\) True # of important dimensions \([d_e]\)

Optimal point(s) in low-dimensional space, with high-probability!

LlamaTune Architecture (low-dim tuning)

- Configuration Optimizer
- Search Space (low-dim)
- Suggests Next Point
- Project Point
- DBMS Configuration
- Configuration Space
- More details in the paper!

- Projection Matrix
 - Projection matrix remains fixed during tuning session

- Categorical Knobs
 - Partition [-1, 1] range to different knob value choices

- Knob value scaling
 - Rescale to actual knob values [-1, 1] -> [low, upper]
LlamaTune Architecture (complete)

- **Knowledge Base**
- **DBMS Configuration Space**
- **Bucketized Search Space (low-dim)**
- **Bias Special Value of Hybrid Knobs**
- **Configuration Optimizer**
- **Update Model**
- **Evaluate**
- **Register Performance**

More details in the paper!

- **Projection Matrix**: Projection matrix remains fixed during tuning session
- **Categorical Knobs**: Partition [-1,1] range to different knob value choices
- **Knob value scaling**: Rescale to actual knob values [-1, 1] -> [low, upper]

Bias Special Value of Hybrid Knobs

- **Configuration**
- **Optimizer**
Evaluation

End-to-end evaluation with six diverse workloads
- TPC-C, SEATS, Twitter, YCSB-A, YCSB-B, ResourceStresser

Multiple performance targets
- Max throughput, 95-th% tail latency

Different underlying configuration optimizer
- SMAC, Gaussian-Based Bayesian Optimizer (GP-BO); DDPG (RL-Based)

Generalization to newer PostgreSQL version

Ablation Studies
- Measure how much each component contributes

Sensitivity analysis for each individual component

Overhead of the configuration optimizer
Evaluation

End-to-end evaluation with six diverse workloads
- TPC-C, SEATS, Twitter, YCSB-A, YCSB-B, ResourceStresser

Multiple performance targets
- Max throughput, 95-th% tail latency

Different underlying configuration optimizer
- SMAC, Gaussian-Based Bayesian Optimizer (GP-BO); DDPG (RL-Based)

Generalization to newer PostgreSQL version

Ablation Studies
- Measure how much each component contributes

Sensitivity analysis for each individual component

Overhead of the configuration optimizer
End-to-End Evaluation

PostgreSQL v9.6, 90 knobs, SMAC, average of 5 runs

YCSB-A
(50%/50% r/w)

TPC-C
9 tables / 8% RO

Twitter
5 tables / 1% RO

LlamaTune reaches baseline perf. ~5.6x faster – improves final perf. ~11%
Sensitivity Analysis – Low-Dim Tuning

PostgreSQL v9.6, 90 knobs, **YCSB-A** (50%/50% read/write), SF=20, SMAC, average of 5 runs
Conclusion

Zero-knowledge DBMS tuners require ~100 samples to find good-performing conf.

- **Sample-efficiency** is crucial; reduces required time / resources utilization

LlamaTune: exploits domain knowledge

- Use **low-dimensional projections** to *indirectly* tune important knobs
- Handles *special values*, bucketizes knob values – search space easier to explore!

Outperforms **SOTA** optimizers [**SMAC**, **GP-BO**, **DDPG**]: up to 11x fewer evaluations

github.com/uw-mad-dash/llamatune/
[kkanellis@cs.wisc.edu]

Thank you! Questions?