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i

“The statements of science are not of what is true and what is not true, but statements of
what is known with different degrees of certainty.”

Richard P. Feynman
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ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Περίληψη

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διπλωματική Εργασία

Συσχέτιση της συμπεριφοράς εφαρμογών με τη μεταβλητότητα τάσης

πυρήνα σε σύγχρονες αρχιτεκτονικές x86, με χρήση μηχανικής
μάθησης

Κωνσταντίνος Κανελλής

Οι σύγχρονες αρχιτεκτονικές x86 είναι εξοπλισμένες με έναν καινούργιο μηχανισμό δυ-
ναμικής κλιμάκωσης της τάσης και της συχνότητας του επεξεργαστή (Dynamic Voltage
Frequency Scaling - DVFS), που ονομάζεται SpeedShift. Ο μηχανισμός SpeedShift
προσαρμόζει αυτόματα την τάση τροφοδοσίας του πυρήνα και την συχνότητα του επε-

ξεργαστή, μέσω υπο-βοήθειας υλικού, βάσει των απαιτήσεων της τρέχουσας εφαρμογής.

Στην παρούσα διπλωματική εργασία διερευνούμε και αξιοποιούμε τον μηχανισμό αυτό,

παρατηρώντας την αλληλπίδραση μιας δυναμικής και χρονικά-μεταβαλλόμενης εφαρμογής

με την αρχιτεκτονική πάνω στην οποία εκτελείται. Συλλέγοντας δεδομένα από γεγο-

νότα που συμβαίνουν στην αρχιτεκτονική (hardware events), τα οποία καταγράφουν
πως η συμπεριφορά μιας εφαρμογής επηρεάζει δομικά στοιχεία της αρχιτεκτονικής, ε-

ξερευνούμε την συσχέτιση τιμών τους με των τιμών της τάσης λειτουργία πυρήνα του

επεξεργαστή, για ένα ευρύ φάσμα εφαρμογών. Στην συνέχεια εφαρμόζουμε διάφορους

αλγορίθμους μηχανικής μάθησης για να εκτιμήσουμε την τιμή της τάσης λειτουργίας

πυρήνα του επεξεργαστή σε οποιαδήποτε χρονική στιγμή. Παρατηρούμε πως κάνοντας

χρήση νευρωνικών δίκτυων, τα οποία έχουν εκπαιδευτεί με βάση τους hardware events,
πετυχαίνουμε μεγάλη ακρίβεια στις προβλέψεις μας. Εν τέλει, σχεδιάζουμε ένα καινοτόμο

εργαλείο που ανιχνεύει και αναλύει αλλαγές μεταξύ των φάσεων εκτέλεσης μιας εφαρ-

μογής, λαμβάνοντας υπόψην την τάσης λειτουργίας πυρήνα του επεξεργαστή, καθώς και

μιας μετρικής κλιμακωσιμότητας της εφαρμογής (π.χ. παραγωγική συχνότητα επεξεργα-

στή), που παρέχεται από τον ίδιο. Το εργαλείο που αναπτύξαμε καταφέρνει να συσχετίσει

τις παραπάνω τιμές με το κομμάτι του κώδικα εφαρμογής που εκτελείται, παίρνοντας με-

τρήσεις του μετρητή προγράμματος (program counter). Δείχνουμε ότι το εργαλείο μας
είναι αρκετά αποδοτικό στο να εντοπίζει τις φάσης μιας εκτελούμενης εφαρμοργής, ενώ η

μεθοδολογία που ακολουθείται είναι λιγότερο επεμβατική στο σύστημά μας, η οποία και

προκαλεί μονο την μισή επιβάρυνση συγκρίνόμενη με το καλύτερο διαθέσιμο εργαλείο.

HTTP://WWW.UTH.GR/
https://www.e-ce.uth.gr/
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by Konstantinos KANELLIS

Modern x86 architectures are equipped with a new, hardware-assisted, Dynamic
Frequency Voltage Scaling (DVFS) mechanism (i.e. SpeedShift). SpeedShift auto-
matically adjusts the CPU core voltage and frequency values based on the applica-
tion needs. In this Thesis, we explore and exploit this mechanism in an attempt to
obtain useful runtime knowledge, by observing the interaction of the time-varying
behavior of applications with the architecture. At first, we explore the correlation
between profiled hardware events, which capture certain aspects of the application
behavior, with CPU core voltage values, for a wide set of diverse workloads. Then,
we leverage supervised machine learning to accurately estimate the CPU core volt-
age value at any time point, and we experiment with various models. We show that,
by using neural networks, it is possible to achieve great accuracy, when the neural
networks are trained on hardware events data. Finally, we design a novel online
phase detection tool, which utilizes CPU core voltage and a workload scalability
metric provided by the architecture itself (i.e. productive frequency), to detect pro-
gram phase changes. The tool also exploits instruction pointer sampling in order to
associate core voltage and productive frequency samples with application context.
We show that our tool efficiently discovers program phases, while being less intru-
sive and having half the overhead compared with the state-of-the-art methodology.
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Chapter 1

Introduction

In the course of the past 40 years processors have became pipelined to increase
the instruction throughput, got equipped with large multilevel caches to hide the
memory latency and used advanced techniques (i.e. out-of-order execution) and su-
perscalar designs to exploit Instruction Level Parallelism. These additions, along
with the significant advances in semiconductor manufacturing techniques, resulted
in tremendous performance improvements, which was generally considered as the
limiting barrier at that time. More recently, and in the dawn of the post-Dennard Scal-
ing [13] era, power efficiency became the primary concern for computer designers.
The introduction of multicore processors partially managed to bypass the perfor-
mance scaling limitations, while retaining the same power budget. However, the
coupling of multiple processing cores on a single die, required the implementation
of additional logic to ensure safe concurrent access to shared resources (e.g. Last
Level Cache).

This rapid and irregular evolution of microprocessors, driven by the need for per-
formance at first and power efficiency later, led to the development of robust, albeit
very complicated architectures. Nonetheless, high-performance workloads should
take full advantage of such computing platforms, avoiding at the same time, unde-
sirable performance degradation often caused due to the poor utilization of some
part of the processor pipeline (i.e. bottleneck). In addition, Operating Systems (OS)
and CPU manufacturers design and implement dynamic software and hardware op-
timization mechanisms, which try to adjust the processor profile to the needs of the
executed workload. However, in order to reach their full potential, these mecha-
nisms need to accurately know the state of the architecture at any point.

Unsurprisingly, different applications have entirely different impact on the utiliza-
tion of each hardware component. For example, matrix multiplication that consists
of many integer (or floating point) operations is limited by the number of CPU arith-
metic units. On the other hand, a linear search over a large array will be limited by
the bandwidth (and latency) of either the caches or the main memory. Moreover, re-
searchers have shown that large and complex applications consisting of thousands
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of lines of code, exhibit time-varying behavior [58], which is attributed to the differ-
ent code portion that is being executed. This behavior produces a distinct signature
at run-time, which if traced and exploited correctly can lead to opportunities for
further performance and power optimizations.

In order to get an insight of the effects of their applications on the micro-architecture,
programmers use software profilers. A software profiler is a tool that monitors
the run-time behavior of an application by gathering interesting program data and
events. Examples of popular profilers are perf_events [37], PAPI [61] and Intel VTune
[29]. Most advanced tools (i.e. Intel Vtune) are able to even characterize the appli-
cation, using for example the Top-down Microarchitecture Analysis Method [68] or find
possible bandwidth limiting bounds in some architectural component, by applying
the Roofline model [66].

Software profilers typically run on top of the application they want to monitor. They
employ dedicated special-purpose registers, which are located in each CPU core.
These registers are called hardware performance counters or Performance Monitor-
ing Units (PMU). Each register can be used to store a specific information (i.e. count
or address) from a wide range of low-level hardware events (e.g. branch mispredic-
tions, cache misses, etc.). Periodically and as long as the application is running, the
profiler samples these registers and stores their values. Once the application exits,
the samples from these low-level raw events can then be combined to extract more
useful high-level metrics (e.g. Instructions per Cycle – IPC).

Unfortunately, the use of performance counters restricts the characterization of the
application behavior in specific hardware domains, which depend on the events cho-
sen to be measured. Furthermore, it is not possible to record too many hardware
events at the same time, as the number of PMUs in each core is limited. In addi-
tion, the inter-core contention on shared resources cannot be deciphered efficiently
from single core events. One possible way to overcome the previous limitations and
acquire a bird’s eye view of the behavior of the executed application, is to use aggre-
gated architectural metrics.

Modern x86 architectures, for example Intel Skylake (and later), are equipped
with a new power management engine called SpeedShift [50]. SpeedShift is ad-
vertised as an autonomous hardware-assisted Dynamic Frequency Voltage Scaler
(DVFS). The motivation behind this mechanism is the quicker system response to
performance burst requests. Using internal metric collection and on-chip sensors,
Speedshift adjusts the CPU frequency and voltage, without any intervention from
the OS. It, also, constantly fine-tunes the voltage and frequency values trying to
compromise between the energy consumption of the CPU package and the work-
load performance. Thus, there is an inherent relationship between the workload
behavior impact on the architecture and the voltage and frequency values set by this
mechanism, at any given time.
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1.1 Contributions

This thesis focuses on exploring and exploiting the aforementioned relationship, in
order to obtain useful runtime knowledge on the time-varying application interac-
tion on the architecture. This knowledge can then be potentially used in conjunction
with online decision-making systems in order to apply dynamic software or hard-
ware optimizations.

The contributions from this exploration and exploitation are the following:

• We profile a large subset of SPEC CPU2006 [26] workloads, by sampling both
hardware performance events and CPU core voltage and frequency values.
Then, we model those samples as time series and we explore both the linear
and non-linear correlation between the two, using statistical methods.

• After having identified some correlation, we leverage supervised Machine Learn-
ing (ML) methods to make accurate estimations on the CPU core voltage value
based on the values of hardware performance events. We experiment with
different ML algorithms and we evaluate their performance.

• Finally, we design and implement an online program phase detection algo-
rithm, which uses the CPU core voltage and frequency values to decide when
a change in the program behavior has occurred. By comparing its accuracy and
performance overhead with the state-of-the-art [54], we show that our tool ac-
curacy is on par, while having negligible runtime overhead.

1.2 Thesis Structure

The rest of this thesis is organized as follows:

Chapter 2 provides background on the evolution of CPU power management mech-
anisms and introduces the perf_events profiling tool, which is capable of monitor-
ing the behavior of an application using various hardware events.

Chapter 3 presents in details the modifications that we made to perf_events, in
order to extend its functionality for unsupported architectural events.

Chapter 4 describes the methodology we following to capture the application behav-
ior, which ultimate led to the creation of two datasets. We explain the two different
approaches we followed for selecting the appropriate hardware events, along with
the post-collecting data cleaning and transformation processes.

Chapter 5 explores the linear and non-linear correlation between collected hardware
events and core voltage values, for each individual workload. In addition, we char-
acterize each workload based on its core voltage behavior.
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Chapter 6 focuses on estimating the core voltage value using supervised machine
learning models that were trained on specific hardware events . We experiment
with diverse ML models and we evaluate their performance on two datasets.

Chapter 7 introduces a novel program phase detection and classification tool that
makes use of core voltage and productive frequency values, to discover phase changes.
Further, we employ unsupervised learning to efficiently classify different parts of the
program execution to distinct phases.

Finally, Chapter 8 concludes this thesis by discussing our key findings and by pre-
senting some directions for future work.
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Chapter 2

Background

2.1 CPU Power Management

The physical barriers encountered in the CMOS transistor manufacturing technol-
ogy, marked the end of low-cost performance scaling. Thus, the research commu-
nity turned its interest in finding ways to minimize the energy consumption. Nowa-
days, the power management is an important concern in the design of CPUs. Mod-
ern CPUs integrate numerous different mechanisms aimed at maximizing power-
savings while trying to minimize performance degradation.

In this section, we present the evolution and the inner-workings of power manage-
ment techniques that have been implemented on the last few generations of Intel
processors. Then, we give an overview of the set of the latest enhancements that
constitute the SpeedShift technology, which we aim to exploit.

2.1.1 Power consumption model

The goal of the CPU power management mechanism is to reduce the power con-
sumption of the processor. The CPU power consumption can be split in two parts:
static power and dynamic (or switching) power, as follows:

PCPU = Pdyn + Pstatic

where Pstatic is the power required just to keep the CPU on, and Pdyn, which reflects
the consumption due to the activity of CPUs logic gates, and depends on the running
workload. Dynamic power Pdyn is the dominant factor in this equation as it accounts
for the majority of the CPU total power consumption. The dynamic power of CMOS
transistors can be approximately modeled [43] as:

Pdyn = aCV2 f
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where C is the switching capacitance, V is the voltage, f is the frequency and a is
the activity factor (i.e. average number of transistor switching events). The key
takeaway here is that the CPU power consumption is proportional to the frequency,
and to the square of the voltage. Thus, by lowering just the voltage it is possible to
get significant power gains, without generally affecting the performance. This is not
the case with frequency though, where lower values bring some power gains but
often result in longer workload execution times.

2.1.2 Dynamic Voltage-Frequency Scaling

Before the CPUs were equipped with Dynamic Voltage-Frequency Scaling (DVFS)
mechanisms, they used constant voltage and frequency operation points. These
adaptive mechanisms allowed for opportunistic adjustments of both voltage and
frequency, especially when the full computational power of the processor is tem-
porarily not needed. In order to ensure the stability of the CPU, however, a change
on the CPU frequency is accompanied with an appropriate CPU voltage change.

The Intel SpeedStep technology [51] released in 2002 (with the Prescott 6 series),
and AMD Cool’n’Quiet in 2003, were the first DVFS implementations for consumer
desktop processors. These mechanisms depend on the operating system to find the
optimal power configuration, based on the current system load. This is achieved us-
ing CPU utilization statistics (i.e. APERF & MPERF registers) provided by x86 platform
[39]. Then, the OS applies the optimal configuration using the Advanced Configura-
tion and Power Interface (ACPI), which relies on the P-states and C-states (explained
below). The above process is repeated periodically (every few 10s of milliseconds),
as the CPU load can change continuously (e.g. new process is spawned, process
switch to sleep state, etc.). In the Linux kernel, this mechanism is implemented un-
der the cpufreq infrastructure [65].

P-States

Depending on the current workload requirements, a CPU can operate at different
discrete voltage-frequency levels called P-States (Performance States). Generally P0

is the highest state (i.e. maximum performance), while Pn is the lowest one (i.e.
maximum power-saving). Each intermediate state (e.g. P1, P2 and so on) saves ad-
ditional power, but at the same time adds an extra penalty to the CPU performance.
Figure 2.1a shows graphically the impact of different P-states at the total power con-
sumption of the CPU.
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(A) P-States (Performance states) (B) C-States (Processor states)

FIGURE 2.1: Figure 2.1a (left) shows intuitively the impact on the pro-
cessor power consumption for various P-states. Figure 2.1b (right)
shows which HW components are powered-down for each C-state.

[7]

C-States

In contrast to P-States, which are design to optimize power consumption under
workload execution, C-states (Processor states) are used to reduce power consump-
tion when the processor is in idle mode (i.e. nothing is executed). At a C-state (other
than C0), unused hardware parts are powered down to save energy seeing that no
workload needs them. Each CPU core can operate on a different C-state which
brings further power savings for single-threaded workload. Figure 2.1b illustrates
which hardware components are powered-down under each C-state. Finally, it is
worth mentioning that P-states are relevant only in the presence of the C0 state, as
the core clock is active only in that state.

The latest microarchitectures (i.e SandyBridge/Haswell/Broadwell) brought addi-
tional power and performance improvements, as these DVFS technologies were fur-
ther optimized (i.e. Enhanced Intel SpeedStep Technology). Moreover, the Linux

kernel support was improved with the use of the smarter intel_pstate governor
[65].

2.1.3 Hardware-controlled P-states (HWP)

Ever since the introduction of the aforementioned power management mechanisms,
it was operating system role to detect a change in the system load and properly ad-
just the CPU frequency-voltage values (i.e. P-state). However, when transient work-
loads are spawned, which are in need of a rapid performance boost, the operating
system response time granularity (10s of milliseconds) is limiting. Another issue is
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FIGURE 2.2: Comparison of core voltage behavior between Skylake
and Haswell architectures

that the OS lacks the ability to make a direct observation of the workload microarchi-
tectural behavior. In order to address these issues, a new set of power management
technologies were implemented in the Skylake (and later) microprocessors.

This new technology, code-named SpeedShift, makes it possible to offload the fre-
quency and voltage shifting from the operating system to a hardware micro-controller
(i.e. Package Control Unit – PCU). PCU collects internal architectural statistics and
monitors the power envelope of the CPU. Using the collected statistics and by com-
puting and applying the optimal configuration every ∼ 1 millisecond , the processor
manages to quickly adapt to bursty performance and power needs [19, 50].

SpeedShift is also capable by default, of instantaneous full-range frequency shifts.
This means that it is possible for example to transition from P4 to P0 in a single step
rather than making all the way through the P3, P2 and P1 states, until eventually
reaching the desired P0 state. The operating system, however, can still change the
default configuration of the mechanism to ensure a Quality of Service (QoS). This is
typically achieved by specifying the minimum and the maximum processor operat-
ing frequency [30].
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Figure 2.2 compares the core voltage behavior between the recent Skylake architec-
ture, and the older Haswell one. Two workloads were profiled: gcc and dealII, which
have shown significant core voltage variability on Skylake architectures. The x-axis
represents the core voltage samples, which are taken every 5 milliseconds. Note
that even though the two architectures have different core voltage operating point
range, the plots have the same y-axis scale. It is obvious that the core voltage on the
Haswell system is almost constant, with minor variations. This is not the case on the
Skylake system, as the core voltage experiences very large fluctuations throughout
the execution of the workload.

2.1.4 Performance Boosting Mechanisms

Apart from the power-saving mechanisms described in the previous paragraphs,
there has been some research on integrating performance-boosting mechanisms on
the processors, too. One such technology is Hyper-Threading (HTT) which basically
allowed two threads to sometimes run simultaneously on a single core [41] (i.e. Si-
multaneous Multithreading – SMT). Because of superscalar design of x86 processors,
it is possible to improve the parallelization of the computations by issuing individual
instructions in the pipeline, with the restriction that they operate on separate data.
Hyper-Threading exists on almost all modern desktop and server mid to high-end
CPUs.

A more advanced mechanism, commonly found in some high-end processors, is
Intel Turbo Boost Technology, which allows some cores to run faster than the
rated clock frequency for a short time [33]. Typically, this mechanism takes action
only when the cores are on the P0 state (i.e. maximum frequency) and within the
power, current and thermal design specification limits. Without diving into the de-
tails, these mechanisms provide some additional P-states, called turbo P-states,
which are used when it is considered safe.

For the scope of this thesis, we won’t be focusing on these performance-oriented
technologies.

2.2 Perf_events profiling tool

In order to monitor the processor microarchitectural behavior, we extensively use
an existing performance monitoring and analyzing tool called perf_events, which
is available in the Linux kernel since version 2.6.32 [37]. Perf_events is capable
(among other things) of statistical profiling of each core or of the entire system by
providing a unified interface to the low-level Performance Monitoring Units (PMU).
These units may differ from one architecture to another, as their specific implemen-
tation uses special-purpose hardware registers.
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Perf_events abstracts the implementation details and enables the hardware events
reporting to the user-space. This is achieved by using a kernel component that per-
forms and buffers the actual measurements and a user-space component, which pe-
riodically pulls and saves these measurements.

Perf_events can be programmed to operate in two modes:

• Counting mode, which enables the counting of the occurrences of certain events
e.g. executed instructions, L1 caches misses, inside a user-defined interval.

• Sampling mode, which periodically triggers interrupts after a user-defined
number of occurrences of the given event.

Since we are not interested in locating individual events but getting aggregated val-
ues, we use the counting mode. Perf_events provide this functionality with the
perf stat subcommand.

Traditional hardware performance counters measure events inside a CPU core. Nev-
ertheless, in modern Intel architectures there are a couple more mechanisms that
provide access to package-wide measurements.

In the next paragraphs, we present a rough overview of each different type of hard-
ware event.

2.2.1 Programmable core events

These are the most common events and usually refer to the programmable hardware
performance events. These events can be monitored by properly programming the
PMUs, which requires some writing to dedicated control registers. Fortunately, these
low-level operations are abstracted by perf_events. On x86 architectures, each CPU
core has a distinct set of PMUs, thus it is possible to take per-core measurements.

Perf_events holds a list of popular pre-defined events which usually refer to the
high-level components of the processor architecture. It also presents them which
user-friendly names instead of the actual (more compliacted ones). Listing 2.1 shows
the output of the perf list subcommand. Typically, the hardware and hardware
cache event types occupy a PMU, while the Kernel PMU events do not. However,
this also depends on which hardware events are to be measured.
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L i s t of pre−defined events ( to be used in −e ) :

branch−i n s t r u c t i o n s OR branches [ Hardware event ]
branch−misses [ Hardware event ]
bus−c y c l e s [ Hardware event ]
cache−misses [ Hardware event ]
cache−r e f e r e n c e s [ Hardware event ]
cpu−c y c l e s OR c y c l e s [ Hardware event ]
i n s t r u c t i o n s [ Hardware event ]
re f−c y c l e s [ Hardware event ]

. . . <omit t ing software events > . . .

L1−dcache−load−misses [ Hardware cache event ]
L1−dcache−loads [ Hardware cache event ]
L1−dcache−s t o r e s [ Hardware cache event ]
L1−icache−load−misses [ Hardware cache event ]
LLC−load−misses [ Hardware cache event ]
LLC−loads [ Hardware cache event ]
LLC−s tore−misses [ Hardware cache event ]
LLC−s t o r e s [ Hardware cache event ]
branch−load−misses [ Hardware cache event ]
branch−loads [ Hardware cache event ]
dTLB−load−misses [ Hardware cache event ]
dTLB−loads [ Hardware cache event ]
dTLB−s tore−misses [ Hardware cache event ]
dTLB−s t o r e s [ Hardware cache event ]
iTLB−load−misses [ Hardware cache event ]
iTLB−loads [ Hardware cache event ]
node−load−misses [ Hardware cache event ]
node−loads [ Hardware cache event ]
node−s tore−misses [ Hardware cache event ]
node−s t o r e s [ Hardware cache event ]

branch−i n s t r u c t i o n s OR cpu/branch−i n s t r u c t i o n s / [ Kernel PMU event ]
branch−misses OR cpu/branch−misses/ [ Kernel PMU event ]
bus−c y c l e s OR cpu/bus−c y c l e s / [ Kernel PMU event ]
cache−misses OR cpu/cache−misses/ [ Kernel PMU event ]
cache−r e f e r e n c e s OR cpu/cache−r e f e r e n c e s / [ Kernel PMU event ]
cpu−c y c l e s OR cpu/cpu−c y c l e s / [ Kernel PMU event ]
i n s t r u c t i o n s OR cpu/ i n s t r u c t i o n s / [ Kernel PMU event ]
mem−loads OR cpu/mem−loads/ [ Kernel PMU event ]
mem−s t o r e s OR cpu/mem−s t o r e s / [ Kernel PMU event ]
cpu/topdown−fe tch−bubbles/ [ Kernel PMU event ]
cpu/topdown−recovery−bubbles/ [ Kernel PMU event ]
cpu/topdown−s l o t s−i ssued/ [ Kernel PMU event ]
cpu/topdown−s l o t s−r e t i r e d / [ Kernel PMU event ]
cpu/topdown−t o t a l−s l o t s / [ Kernel PMU event ]

LISTING 2.1: Output of perf list subcommand

The number of the available hardware events is much higher though, and depends
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Perf_events Name
Mnemonic Name

Event Description

cpu/instructions
INST_RETIRED.ANY

Instructions retired from execution

cpu/cycles
CPU_CLK_UNHALTED.THREAD

Cycles when the core is not in halt state

cpu/ref-cycles
CPU_CLK_UNHALTED.REF_TSC

Counts the number of reference (i.e not
affected by core frequency changes) cy-
cles when the core is not in a halt state.

TABLE 2.1: Fixed-function events in the Skylake architecture

on the architecture generation. On the Skylake architecture, the actual number of
such events is approximately 220 [31]. Perf_events can program the PMUs to mon-
itor any of these events by providing its (unique) event mnemonic name. Unfortu-
nately, it is not possible to monitor all these events simultaneously, as the limited
number of PMUs (per core) in Skylake architecture allows for the simultaneously
monitoring of 444 events, or 888 if the Hyper-Threading technology is disabled.

2.2.2 Fixed-function events

Fixed-function events, are per core performance events that do not occupy a PMU. In
contrast to programmable counters, these are special registers, which have the very
specific role of measuring a certain event. In general, these registers are updated
internally by the CPU at constant intervals, and thus changing the event measured
is not possible.

Table 2.1 lists the fixed-function events for the Skylake architecture. Note the generic
nature of these events, as their value can be beneficial in any kind of performance or
power analysis.

2.2.3 Shared socket-wide events

The shared socket-wide events, called from now on uncore events, measure events
that occur outside the CPU cores. The uncore PMUs (or "boxes") can be programmed
to measure the number of last level cache (i.e. L3 cache) misses, cache coherence
protocol snoop events and main memory (i.e. RAM) cache line requests and many
more [31]. There exist various types of "boxes", which are located in different parts
of the architecture to allow for the effective profiling of the subsystems. For example,
a C-box is dedicated to the last level cache metrics, the iMC refers to the integrated
memory controller etc. More technical details related to uncore events, can be found
in [63].
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Event Name / Register Name Event Description
power/energy-pkg/
MSR_PKG_ENERGY_STATUS

The total amount of energy consumed by
the whole package / chip.

power/energy-cores/
MSR_PP0_ENERGY_STATUS

The total amount of energy consumed
only by the cores.

msr/thermal/
IA32_THERMAL_STATUS

Current core temperature

TABLE 2.2: Pre-defined power / thermal events by perf_events

2.2.4 Power-related and thermal events

In addition to the previous performance events, modern systems may provide on-
CPU power and energy measurements. These are exposed via the Running Average
Power Limit (RAPL) interface, which is available on certain Intel processors. De-
pending on the actual processor model, these might be just estimates, computed by
math models, or actual power measurements, provided by on-chip sensors. RAPL
events are divided among different components of the platform, to enable for finer
control (e.g. package, CPU cores, DRAM controller etc.).

Perf_events supports the RAPL interface since mainline version 3.14 [38]. Ta-
ble 2.2 lists the relevant power and thermal events, provided by perf_events for
the Skylake architecture.
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Chapter 3

Extending perf_events

As it has been discussed in section 2.2, the run-time knowledge of the micro archi-
tecture can be obtained using mechanisms that employ dedicated hardware registers
(i.e. PMUs). These registers are just a small part of a larger group of architecture-
specific registers called Model-Specific Registers (MSR) [32]. The access to the ma-
jority of the registers, which are used by some already-established mechanism (i.e.
RAPL, PMU) has already been abstracted by the specifications of the interface. How-
ever, there are more MSRs available which are not part of some interface, yet they
can be read directly to extract more information.

Reading from or writing to an MSR is handled by the rdmsr and wrmsr commands.
These are privileged instructions, however, and cannot be executed directly from
the user-space. Thus, we make some modifications to the kernel component of
perf_events with the intention to include the measurement of events described be-
low, which are not yet supported by the current versions 1.

3.1 CPU core voltage

According to Intel Software Developer’s Manual [32], which lists all the MSR for
each processor generation, it is possible to read the CPU core voltage on SandyBridge

(and later) architectures. This is achieved by reading the value in the IA32_PERF_STATUS
MSR and then extracting the value of [32, 47] bits. Through experimentation we
discovered that this register value is updated every ∼ 1 millisecond.

Listing 3.1 presents a sample C implementation that returns the core voltage value (in
millivolts). Please note, however, that the CPU (i.e. package) provides just a single
MSR register for all cores. Now, whether it is the case that each core has it is own
voltage regulator, and thus may work on a different voltage level from each other,
or all cores share the same regulator, is not currently documented. For the scope of
this thesis, it is assumed that all cores are powered by the same core voltage.

1These modifications were made by Panos Koutsovasilis
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unsigned short read_core_vol tage ( i n t cpu_core ) {
unsigned long long vid = rdmsr ( cpu_core , MSR_IA32_PERF_STATUS ) ;
vid = ( vid >> 32) ∗ 1000 ;
return ( ( unsigned short ) vid >> 13) ;

}

LISTING 3.1: Sample function implementation in C that returns the
core voltage in millivolts, on SandyBridge (and later) processors

3.2 Core Frequency

The current CPU core frequency can be calculated in Skylake architectures by taking
readings of the following two MSRs:

• IA32_MPERF, which increments with the maximum frequency (i.e. fixed clock
rate), when the processor is in the C0 state.

• IA32_APERF, which increments with the actual/current frequency (i.e. clock
rate of execution), when the processor is in the C0 state.

Assuming the processor is not idle, the APERF/MPERF indicates the ratio of to-
tal cycles to constant-clock cycles (i.e. cycles that would had been executed if the
processor was at the P0 state at the whole time). Thus, using the following formula:

FREQCORE = FREQBASE × (∆ APERF / ∆ MPERF)

it is possible to obtain the average core frequency over the last interval (as shown
in [31] – paragraph 14.5.5). The CPU base frequency is a design-specific value and
it is constant on the processor. So, the above formula can be translated to code by
using the APERF and PFREQ values of the previous interval to calculate ∆ APERF and
∆ MPERF, respectively.

3.3 Productive Performance

One new and very interesting metric, found only in Skylake (and later) architec-
tures, is the so-called Productive Performance. As discussed in [31] on paragraph
14.4.5.1, it provides a quantitative metric to software of hardware’s view of workload
scalability. This can be defined as a rough estimation of the relationship between fre-
quency and workload performance, to software.

The Productive Performance value can be obtained by reading the IA32_PPERF MSR.
This counter is increased only in "productive" cycles, where the hardware believes
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that there is real progress to instruction execution. In other words, "productive" cy-
cles are the ones that the core does not experience any activity stalls due to some
dependency (e.g. waiting data from memory). So, in simple terms, productive per-
formance refers to the extent of stalls compared to stall-free cycles within a time
window [44].

Analogous to the core frequency case, the ∆ PPERF/ ∆ APERF indicates the ra-
tio of total cycles to the productive or stall-free ones (based on observations from
the hardware itself). Having these in mind, we define a new metric, which we call
Productive Frequency, as follows:

FREQPROD = FREQBASE × (∆ PPERF / ∆ APERF)

We can argue that FREQPROD is the (average) lowest possible frequency value that
we could have set the core frequency to in the last interval, so it didn’t had a nega-
tive impact on the workload performance. We will see later on section 7.3, that the
productive frequency can be exploited for detecting phases of workload behavior.

3.4 Processor states (C-states)

The Skylake architecture provides several MSRs on each CPU core that can be used
to measure how much time a core spends in some idle-state (i.e C-state). Each core
has dedicated MSRs for the C3, C6 and C7 states. At every cycle the processor core
increments one of these MSRs if it currently is in any of these states. An additional
MSR, named time-stamp counter (TSC) that is increased every cycles, can be used to
find the residency percentage. This is achieved by dividing the C3, C6 and C7 state
value by the TSC value, as the latter is invariant of the core C-state:

RESIDENCYCX = TICKSCX / TICKSTSC , where CX ∈ {C3, C6, C7}

Since the architecture does not provide dedicated MSRs that count the time spent on
C0 and C1 states, these are computed with the help of MPERF MSR. More specifi-
cally, the C1 residency can be computed as follows:

RESIDENCYC1 = (TICKSTSC −∑
s∈S

TICKSs) / TICKSTSC

where S = {MPERF, C3, C6, C7}. Finally, the C0 residency can be computed by sub-
tracting all the other C-state residencies:

RESIDENCYC0 = 1.0− ∑
Cx∈CX

RESIDENCYCx , CX = {C1, C3, C6, C7}
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Listing 3.2 shows a sample C code that calculates the C-states residencies using the
method described above. A slight code addition can be observed when comput-
ing the cycle count (i.e ticks) of C1 residency. As the MSR values cannot be read
simultaneously, but with a small delay, C1 ticks might end up with negative value.
Therefore, an explicit check ensures that this will never happen.

void g e t _ c x _ r e s i d e n c i e s ( i n t cpu_core , f l o a t ∗ c0_perc , f l o a t ∗ c1_perc ,
f l o a t ∗ c3_perc , f l o a t ∗ c6_perc , f l o a t ∗ c7_perc ) {

unsigned long long mperf , c1 , c3 , c6 , c7 , t sc , c x _ t i c k ;

/ / Read Cx−s t a t e s , MPERF & Timestamp c o u n t e r t i c k s
mperf = rdmsr ( cpu_core , IA32_MPERF ) ;
c3 = rdmsr ( cpu_core , MSR_CORE_C3_RESIDENCY) ;
c6 = rdmsr ( cpu_core , MSR_CORE_C6_RESIDENCY) ;
c7 = rdmsr ( cpu_core , MSR_CORE_C7_RESIDENCY) ;
t s c = rdmsr ( cpu_core , IA32_TIME_STAMP_COUNTER) ;

/ / C a l c u l a t e C1−s t a t e t i c k s
c x _ t i c k s = c3 + c6 + c7 ;
c 1 _ t i c k s = ( mperf + c x _ t i c k s <= t s c ) ?

t s c − mperf − c x _ t i c k s : 0 ;
c x _ t i c k s += c1 ;

/ / CX r e s i d e n c i e s
∗ c1_perc = c1 / t s c ;
∗ c3_perc = c3 / t s c ;
∗ c6_perc = c6 / t s c ;
∗ c7_perc = c7 / t s c ;
∗ c0_perc = 1 − ∗ c1_perc − ∗ c3_perc − ∗ c6_perc − ∗ c7_perc ;

}

LISTING 3.2: Sample function implementation in C that returns the
C-states residencies percentage on Skylake processors

Table 3.1 summarizes the registers that were used for extending the perf_events

capabilities. It is possible for a single MSR to have multiple copies across every core
or even every thread (i.e scope). For example, in the case of an MSR with core scope,
each core has its own dedicated register. If a CPU has 4 cores, then 4 values can be
extracted for the same event. Furthermore, the values on these registers are different
as each core executes instructions independently from the others.

3.5 Variable Interval Measurements

The implementation of perf_events reports the measurements of the hardware events
at fixed intervals. However, in the course of our research, it was required to take
measurements of MSR-related events in smaller intervals than PMU-related ones.
Therefore, we modified the kernel component of perf_events to enable for variable
interval measurements among different events.
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Addr Description Scope Register Name
0x198 Core Voltage

(bits 47:32)
Package IA32_PERF_STATUS

0xE7 Maximum Performance
Frequency Clock Count

Thread IA32_MPERF

0xE8 Actual Performance
Frequency Clock Count

Thread IA32_APERF

0x64E Productive Performance
Count

Thread IA32_PPERF

0x10 Time Stamp Counter
(TSC)

Core IA32_TIME_STAMP_COUNTER

0x3FC C3 Residency Counter Core MSR_CORE_C3_RESIDENCY
0x3FD C6 Residency Counter Core MSR_CORE_C6_RESIDENCY
0x3FE C7 Residency Counter Core MSR_CORE_C7_RESIDENCY

TABLE 3.1: List of registers used for extending perf_events

This change was pretty straightforward, as the actual sampling is performed inside a
big while loop that is executed at fixed time points. First, we reduced the time delay
between two consecutive iterations, which correspond to MSR-related events mea-
suring. Then, in order to measure the PMU-related events, we added logic that sam-
ples these only every k-th iteration. To summarize, MSR-related events are measured
in each iteration, while PMU-related ones every k iterations. By properly defining k
and the fixed time interval (in milliseconds) we can support all possibilities.
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Chapter 4

Capturing Workload Behavior

4.1 Workload selection

In order to achieve a comprehensive analysis of the inner-workings of SpeedShift,
we use a large subset of the SPEC CPU2006 [26] benchmarking suite. This suite con-
sists of a wide range of CPU-intensive workloads, written in C, C++ or Fortran pro-
gramming languages, which originate from real-world applications. Each workload
may perform integer or floating-point operations and stresses different part the sys-
tem’s processor and memory subsystem.

Table 4.1 lists the workloads from the selected SPEC CPU2006 subset along with
more information regarding their application domain.

4.2 Workload Profiling

4.2.1 System Specs & Setup

The workloads are profiled on a typical Intel Xeon workstation. Table 4.2 contains the
full hardware and software specification of this system. Please note that the desig-
nated nominal supply voltage is the maximum possible, when there is full utilization
of the CPU.

Before running the workloads, a bash script is run to perform the initial setup of the
system. This setup / configuration script, the code of which is shown in Listing 4.1,
does the following actions:

• It disables the NMI Watchdog, which conflicts with perf_events when reading
or writing the MSRs. If not disabled, it can lead to reduced accuracy.

• It loads the msr module to the kernel, using the modprobe command. This is
necessary in order for the modified perf_events version to be able to access
the aforementioned MSRs.
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Name Operation Type Language Application Domain
bwaves Floating-Point Fortran Fluid Dynamics
bzip2 Integer C Compression
dealII Floating-Point C++ Finite Element Analysis
gamess Floating-Point Fortran Quantum Chemistry
gcc Integer C C Compiler
gobmk Integer C AI / Go
gromacs Floating-Point C Molecular Dynamics
h264ref Integer C Video Compression
hmmer Integer C Search Gene Sequence
lbm Floating-Point C Fluid Dynamics
leslie3d Floating-Point Fortran Fluid Dynamics
libquantum Integer C Physics / Quantum Computing
mcf Integer C Combinatorial Optimization
milc Floating-Point C Quantum Chromodynamics
namd Floating-Point C++ Molecular Dynamics
omnetpp Integer C++ Discrete Event Simulation
perlbench Integer C Programming Language
povray Floating-Point C++ Image Ray-tracing
sjeng Integer C AI / Chess
soplex Floating-Point C++ Linear Programming Solver
sphinx3 Floating-Point C Speech Recognition
tonto Floating-Point Fortran Quantum Chemistry
xalancbmk Integer C++ XML Processing
zeusmp Floating-Point Fortran Physics / CFD

TABLE 4.1: Subset of SPEC CPU2006 workloads used for profiling

• It enables the SpeedShift technology on each core, by setting the least signifi-
cant bit of the IA32_PM_ENABLE MSR.

• It locks the core frequency of all 4 cores to the fixed base frequency of the pro-
cessor (i.e. 3GHz) . This is achieved by writing at the IA32_HWP_REQUEST MSR
(more details can be found in [31] on paragraph 14.4.4). The fixed frequency
allows us to not worry about potential run-time changes across P-states but
instead focusing on the voltage variation on a single one.

# ! / b i n / bash
echo 0 > /proc/sys/kernel/nmi_watchdog # D i s a b l e t h e NMI watchdog
sudo modprobe msr # Expose MSRs on user−s p a c e
sudo wrmsr −a 0 x770 0x1 # Enab l e S p e e d S h i f t on e a c h c o r e
sudo wrmsr −a 0 x774 0 x19e0001e1e # Fix t h e c o r e f r e q u e n c y t o 3 . 0GHz

LISTING 4.1: System initial pre-profiling configuration script

In addition, we disable the Turbo Boost Technology to prevent any core from briefly
switching to some turbo P-state. To further limit the interference from the operating
system, we also disable the internal Intel P-state governor. This is achieved by se-
lecting the acpi-cpufreq driver, instead of the default intel_pstate one, which is
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Parameters Values
CPU Xeon E3–1220 v5

# of Cores / Threads 4 / 4
CPU Base Freq. 3.00 GHz

CPU Max Turbo Freq. 3.50 GHz
L1 D-Cache 32KB / core
L1 I-Cache 32KB / core
L2 Cache 256KB / core
L3 Cache 8 MB
RAM Size 8 GB
RAM Type DDR4 @ 2133 Mhz
Technology 14nm

Supply Voltage (Vdd) 1.15V
Thermal Design Power 80 W

Operating System Ubuntu 16.04
Linux Kernel Version 4.10.17

TABLE 4.2: Specifications of the Skylake workstation

present in Linux kernel (details are available in [65]). After these steps, the full con-
trol of frequency and voltage operation points has been handed to the autonomous
SpeedShift mechanism.

Finally, we launch one workload instance for every core, and we bind them to indi-
vidual cores (using the taskset command), to be certain that they will not migrate
among cores.

4.2.2 Perf_events Sampling Interval

The sampling rate of the events measured greatly depends on their rate of change.
Figure 4.1 shows how quickly the core voltage value changes in the first half second
of the execution of three representative workloads (i.e. gcc, omnetpp, xalanbmk).
Samples are taken every 5 milliseconds and the red dots indicate samples that are
100ms apart. Notice that while the "red" samples of xalanbmk workload are repre-
sentative of overall core voltage behavior, this is not true for some parts of gcc and
omnetpp execution.

Perf_events supports the sampling of aggregated hardware events that are mea-
sured by the PMUs at different time intervals. The user can specify the desired time
interval depending on her needs. In our case, we are interested in observing the re-
lationship between hardware events and core voltage. As it has been shown though,
core voltage may flunctuate very quickly. Therefore, the lowest possible sampling
rate should be preferred, which is found to be 100100100 ms. Lower values, produce a
perf_events warning message, stating that significant overhead might be introduced,
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FIGURE 4.1: Comparison of core voltage behavior for three represen-
tative SPEC2006 workloads

mainly due to the time spent for the configuration of PMUs. Thus, we stay with 100
ms, which is applied for the core, uncore and fixed-function events / counters.

In contrast to PMU hardware events, the sampling of events that are measured us-
ing dedicated MSRs has no real overhead. Their values are updated internally by the
CPU in constant intervals, regardless of the actions of the operating system. Since the
only step in gathering these measurements is just reading an MSR (using the rdmsr

instruction), the overhead is minimal as this call is done inside the kernel space (as
described in Chapter 3) and does not require any expensive context switches. The se-
lected sampling interval for these events is set to 555 ms, and is applied for the power
events, the core voltage, the core and productive frequency and the C-states resi-
dency events.

To summarize, for each PMU-related sample we obtain 202020 MSR-related samples.

4.3 Data Collection, Cleaning & Transformation

In our evaluation system, we are able to measure just 8 core hardware events si-
multaneously, as this is the number of PMUs per core. This is a very limiting if we
recall that the number of available hardware events is over 220. Keeping these in
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mind, there are two approaches here: either we explicitly choose some high-level
metrics that have previously been successfully used in other domains or we some-
how manage to get measurements for the majority of events and then, by leveraging
data mining and statistical methods, select which best describe the core voltage be-
havior. We experiment with both, as we create two separate datasets. The exact
methodology followed is described in the next paragraphs.

4.3.1 High-Level Metrics (HLM) dataset

A lot of work has been done in power consumption estimation of modern proces-
sors, using hardware performance counters. Even though, one could argue that
estimating power is the same as estimating voltage, we saw that this is not true, as
voltage is an instantaneous event, in contrast to power which is an aggregated one.
Nevertheless, researchers have suggested a variety of hardware events that span
across multiple components of the architecture, as presented in [59] and [10].

A more thorough investigation of hardware events has been presented by the Top-
Down Microarchitectural Analysis (TDMA) [68]. TDMA is a practical method for
quickly characterizing a workload based on the performance bottlenecks, caused by
stalls in the architectural level. It employs a hierarchical organization of event-based
metrics, which measure the state of the micro-architectural entire spectrum. The first
level of TDMA hierarchy consists of the following metrics:

• Front-end Bound, which denotes when the front-end part of the architecture
undersupplies the back-end. The front-end contains the branch predictor and
the instruction fetcher and decoder units.

• Bad Speculation Bound, which refers to time wasted due to incorrect specu-
lations. The wasted time is due to branch miss-predictions and machine clears
(i.e. pipeline flushes).

• Retiring Bound, which reflects the retiring rate of micro-ops / instructions
from the arithmetic and floating-point units (both scalar and vectorized).

• Back-end Bound, which measures the stall count, which occurred due to lack
of required resources. This can be further split into memory bound, where ex-
ecution is stalled due to data-cache misses, and core bound, where the stalling
reason is the overload of the Arithmetic Logic Unit (ALU).

Although TDMA aims at improving performance, which is not related directly to
power behavior, there is close resemblance on the hardware events chosen by both
studies. However, this events list does not explicitly include events that are target-
ing the behavior of both caches and main memory. Hence, to fill this gap we include
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Event Name Event Description
Core Events

IDQ_UOPS_NOT_DELIVERED
.CORE

Uops not delivered to Resource Allo-
cation Table (RAT) per thread when
backend is not stalled

UOPS_ISSUED.ANY
Uops that RAT issues to Reservation
Station (RS)

UOPS_RETIRED.RETIRE_SLOTS Counts the retirement slots used

INT_MISC.RECOVERY_CYCLES

Core cycles the allocator was stalled
due to recovery from earlier clear
event for this thread (e.g. mispredic-
tion or memory nuke)

RESOURCE_STALLS.ANY Counts resource-related stall cycles

MEM_LOAD_RETIRED.L1_HIT
Retired load instructions with L1
cache hits as data sources

MEM_LOAD_RETIRED.L2_HIT
Retired load instructions with L2
cache hits as data sources

MEM_INST_RETIRED.ALL_LOADS All retired load instructions
Uncore Events

UNC_CBO_XSNP_RESPONSE
.MISS_EVICTION

A cross-core snoop resulted from L3
Eviction which misses in some proces-
sor core

UNC_CBO_CACHE_LOOKUP
.ANY_MESI

L3 Lookup any request that access
cache and found line in MESI-state

UNC_ARB_TRK_OCCUPANCY.ALL
Number of all Core entries outstand-
ing for the memory controller

UNC_ARB_TRK_REQUESTS.ALL
Total number of Core outgoing entries
allocated. Accounts for Coherent and
non-coherent traffic

Fixed Events

cpu/cycles
Core cycles when the thread is not in
halt state

cpu/instructions Instructions retired from execution

Power Events

power/energy-pkg/
The total amount of energy consumed
by the whole package/chip

power/energy-cores
The total amount of energy consumed
only by the cores

Miscellaneous
msr/vid CPU Core voltage (in millivolts)
msr/freq CPU Core frequency (in MHz)
msr/productive_freq Productive Frequency (in MHz)
msr/c0_residency CPU Residency Percentage in C0 state

TABLE 4.3: Total hardware events measured for the HLM dataset
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specific events that primarily focus on the power footprint of the different cache lev-
els (i.e. L1, L2, LLC). Table 4.3 lists the hardware events measured by perf_events,
which are used for the construction of HLM dataset.

4.3.2 All-Metrics (AM) Dataset

Although the gathering of all hardware events is not feasible in as single run, many
individual profiling runs can be performed. In order to profile ∼ 220 events, 28
distinct runs were required. The workload execution times were varying slightly, as
different hardware event sets introduce different overhead. To adjust the unequal
number of samples, a number of the last samples was dropped for each run so that
each run had the same number of samples.

Multiple runs means that there are multiple values of each MSR event, as these are
profiled for each run. Still, for constructing the final dataset, a single and hopefully
representative value, should be selected. One option is to take the average of all
values profiled. However, this average is a synthetic value, since it was not obtained
from a direct measurement. Thus, we choose the median MSR value across the all
runs, as it is the result of a real run.

4.4 Data Cleaning

Once the profiling data are collected and exported to .csv files by perf_events, the
data cleaning process is taking place to ensure that the acquired data are relevant
and can be included in the final dataset. Data cleaning (or data cleansing) usually
refers to removing incorrect or inaccurate samples obtained during the collection
phase [67]. In our case, the following cleaning steps are performed:

• The samples with a C0-state residency value below 80% are discarded. The
rationale behind this decision is that at this time interval, the processor is not
"busy enough", and thus the aggregated hardware events values obtained can-
not be directly compared against other intervals. Depending on the workload,
this discards from 0.5% to 2% of the total samples collected.

• The samples having a core frequency value outside of the 2.95 − 3.05 GHz
range are dropped as well. It has been observed that on some workloads there
exist some sudden peaks on the core frequency value. As frequency changes
may impact the core voltage as well, we want to make sure that our samples
are consistent to the same voltage range. This step drops less that 0.5% of the
samples for every workload.

The above steps are applied to both HLM and AM dataset samples.
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Metric Name Formula
Core Metrics

Frontend Bound FetchBubbles / TotalSlots

Bad Speculation
(SlotsIssued – SlotsRetired + Recovery-
Bubbles) / TotalSlots

Retiring SlotsRetired / TotalSlots

Backend Bound
1 – (Frontend Bound + Bad Speculation +
Retiring)

Instructions Per Cycle Instr / Cycles
L1 Cache Hit Percentage MemHitL1 / MemLoadInstr
L2 Cache Hit Percentage MemHitL2 / MemLoadInstr
Memory Loads Fraction MemLoadInstr / Instr

Uncore Metrics
Memory Miss Eviction Perc MemMissEviction / TotalSlots

Memory Cache Lookups Perc MemCacheLookups / TotalSlots
Memory Request Latency MemOccupancy / MemRequests

TABLE 4.4: Tranformation of gathered events for the HLM dataset

4.5 Data Transforming

4.5.1 PMU-related events

The collected PMU data of the HLM dataset are transformed based on the principles
presented by the TPDA. The transfomation process includes adding, subtracting and
diving between sampled hardware event values, to obtain a more meaningful met-
ric. For the above-mentioned high-level metrics (i.e. Front-end & Back-end Bound,
Bad Speculation and Retiring), simple formulas exist that do the conversion. Our
own memory-related event values can also combined using formulas, to compute
the percentage of L1, L2 and L3 cache hits, as well as the data loads fraction to all
instruction. Finally, the main memory request latency time is computed with the use
of two uncore hardware events. Table 4.4 presents the transformation formulas for
each metric.

Since the hardware events of the AM dataset are so diverse, it is impossible to derive
separate formulas. Nevertheless, all the aggregated event values increment with
respect to core cycles. Thus, we divide all collected events with the core cycles.

4.5.2 MSR-related events

The situation is different for the events read directly from MSRs, which already have
a physical meaning. Therefore, these events are neither converted nor combined to-
gether. However, recall that for each PMU-related event value we sample 20 dif-
ferent values from MSRs. Even though these values can help us visualize better
their behavior, yet for data analysis purposes single values shall be selected. Again,
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as with the previous case of multiple MSR values due to multiple runs on the AM
dataset, we chose the median of the 20 samples (i.e. across the 100ms interval) for
the same reasons.
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Chapter 5

Data Analysis

This section shows graphically a small, yet sufficient subset of the collected data, to
further establish the motivation behind this thesis. Furthermore, a correlation anal-
ysis is made, using the collected samples. This analysis focuses on the relationship
between hardware performance events and the CPU core voltage. For both cases,
the HLM dataset is used, as the transformed high-level metrics decently capture the
individual behavior of most microarchitectural components.

5.1 Data Visualization

Although the volume of the collected data is huge (i.e 24 workloads and∼ 3.5 hours
of profiling the HLM dataset), and thus it is impossible to plot everything, we can
get a good insight with respect to the rest of the data by visualizing few workloads
that have interesting behavior.

5.1.1 Workload Events Behavior

Figure 5.1 shows the majority of hardware counters for bzip2 workload, as they
were sampled in a single run. Notice how the core voltage fluctuates between high
(around 1070 mV) and low values (around 990 mV), but at the same time exhibits
large periods of stability. The voltage changes between the high and low values are
instantaneous, as the processor tries to adapt to the workload needs. This adaption
(and possible speculation) process of the underlying mechanism, can also be seen
from the random few voltage spikes.

Another thing to look at, is the behavior of the hardware events over time. Apart
from the Productive Frequency behavior, which despite the large spikes at the volt-
age droops points, does not look alike the core voltage, all events show some sim-
ilarity. For example, the RESOURCE_STALLS.ANY and BE_BOUND event values, display
impressive similarity with the core voltage (and with each other). Furthermore, sim-
ilarity can be also observed between other pairs, such as FE_BOUND and BAD_SPEC
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FIGURE 5.1: Time-varying behavior of bzip2 hardware events
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or IPC and MEM_LOAD_RETIRED.L1_HIT. However, the fast fluctuations observed in
these events do not seem to reflect the core voltage behavior, which is for the most
part stable. One might assume that some events (especially those with intense fluc-
tuations) cancel each other and thus have no real impact on the core voltage value,
though there is no practical way of proving this statement.

5.1.2 Core Voltage Behavior

Unfortunately, due to the diversity of the workloads, the above observations cannot
be generalized to every application. Each workload has a different impact on the
architecture and thus different hardware event footprints. This can be seen clearly
in Figure 5.2, where the core voltage variability for each workload is shown. The
y-axis is the core voltage value while the x-axis is the sample index. Remember that
samples are ∼ 100 milliseconds apart and that execution times differ.

On our system, core voltage values range from ∼ 980 mV to ∼ 1080 mV at the fixed
3.0GHz frequency. However, apart from bwaves, bzip2, dealII, gamess, gcc, milc,
tonto and xalanbmk which exploit the full voltage range throughout their run, other
workloads tend to not have intense fluctuations.

Table 5.1 shows the workload characterization based on the rapidness and the inten-
sity observed by the core voltage variability. The majority of the workloads, can be
assigned to a single category, even if its behavior changes over time. Nevertheless,
gobmk and omnetpp have been assigned to two categories, as they exhibit notable
variation on separate parts of their entire execution.

Big Small

Rapid
bwaves, dealII, gamess,
namd, omnetpp, tonto

gobmk, gromacs, lbm, om-
netpp, soplex, xalanbmk,
zeusmp

Slow bzip2, gcc, gobmk, milc
h264ref, hmmer, leslie3d,
libquantum, mcf, perlbench,
povray, sjeng, sphinx3

TABLE 5.1: Characterization of workloads based on the rapidness
and intensity of core voltage fluctuations

Moreover, another characterization of the workloads can be made, regarding the
periodic behavior of core voltage values. A behavior is said to be periodic, if it is
repeating itself, on a regular (or variable) interval. Of all the workloads, bzip2, milc,
tonto and gamess demonstrate constant periodic behavior for the whole run. Other
workloads exhibit periodicity in some part of the execution, such as bwaves (i.e. in
the beginning) and xalanbmk (i.e. before the voltage droop near the end). Finally,
deallII’s behavior is very interesting, as it is periodic but with an increasingly larger
interval.
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FIGURE 5.2: Core voltage variability for each workload, over time
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5.2 Correlation Analysis

Correlation analysis is a set of statistical methods that quantify the strength of as-
sociation between two variables over time. It can also measure, depending of the
method, and the direction of this association (i.e. positive or negative). This statis-
tical technique helps the researchers to establish if there is any perceptible relation-
ship between the variables, and if so, potentially exploit it in some practical way. It
is worth noting, however, that correlation analysis alone is not sufficient to prove a
causal relationship (i.e. "correlation does not imply causation" argument).

In simple words, if a correlation is found between two variables, then when the first
variable experiences some change in its values, then there should be a respective
change in the values of the second variable, over a certain time period. In order to
measure and explain the potential existence of a bivariate correlation, several corre-
lation metrics (also known as correlation coefficients) are used. These coefficients
indicate the strength and the direction of the relationship, using a single value be-
tween −1 and +1.

The strongest the correlation, the closer the coefficient value gets to ±1. If there is
weak correlation, the coefficient value would be closer to 0. A value of 0 indicates no
correlation, which means that the bivariate values fluctuate independently of each
other. In addition, the direction of the relationship can be positive or negative:

• Positive correlation exists if the first variable increases simultaneously with
the other, and vice-versa (i.e. "+" sign).

• Negative correlation exists if the first variable increases, while at the same time
the other decreases, or the opposite (i.e. "−" sign).

Summarizing, a coefficient value of +1 indicates a perfect positive degree of associ-
ation between the two variables, while a value −1 a perfect negative one. Further-
more, an association can be linear or non-linear (or monotonic) depending on the
rate of change of the values. In the following subsections, we explore both possibili-
ties.

5.2.1 Exploring Linear Correlation

Pearson’s Product-Moment Coefficient

Pearson’s product-moment coefficient, also known as Pearson’s r for samples, is the
single most popular measure of linear correlation between two variables [53]. For a
population the Pearson’s coefficient is defined as the covariance of the two variables
divided by the product of their standard deviation. However, for sampled variables
the following formula is used:
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r = ∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy
=

∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2

where sx and sy are the sample standard deviations, xi and yi are the i− th sampled
points, x̄ and ȳ are the sample means and n is the sample size. Being a parametric
statistical value, Pearson’s coefficient can be vulnerable to outliers. In this case, the
resulting value can be misleading [14]. However, due to the dataset pre-processing
steps, mentioned in section 4.4, this is less likely to happen in our case.

Core Voltage - Hardware Events Correlation

Figure 5.3 shows the calculated Pearson correlation coefficient, between each hard-
ware event and the core voltage, for every workload. It is observed that different
workloads bring different correlation values.

We can make a workload characterization, depending on the Pearson’s coefficient
values, as shown in Table 5.2.

Correlation Strength Workloads
Strong bwaves, bzip2, h264ref, omnetpp,

xalanbmk

Moderate dealII, gamess, gcc, gobmk, namd,
povray, zeusmp

Weak gromacs, hmmer, lbm, milc, perlbench,
sphinx3, tonto, sjeng

Zero leslie3d, libquantum, mcf, soplex

TABLE 5.2: Workload Characterization based on the Core Voltage–
Performance Events Linear Correlation

Bwaves, bzip2 and xalanbmk display really strong linear correlation with most of the
hardware events. However, the majority of the workloads, exhibit moderate to weak
correlation with some events. It is worth noting that there are no dominant events
(i.e. events that relate to core voltage for every workload). In addition, we think
it is surprising that the same hardware event can have both positive and negative
correlation to core voltage, depending on the profiled workload. This is the case for
all events measured in the HLM dataset.

Some workloads exhibit (almost) zero correlation with every hardware event. This
may seem concerning at first. However, as it was shown previously in Figure 5.2,
these workloads have very constant core voltage signatures. Thus, it is really hard
to detect any correlation anyways.
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FIGURE 5.3: Pearsons’s r correlation coefficient for each hardware
event and workload
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5.2.2 Exploring Non-Linear correlation

Spearman’s Rank Correlation Coefficient

In contrast to the parametric Pearson’s r, in this section a non-parametric approach
is presented. The Spearman’s rank correlation coefficient, commonly referred to as
Spearmans’s rho rs, assesses statistical association based on the ranks of the data [64].
That is, it measures the statistical dependency between the rankings of two variables.
By avoiding measuring directly the linear relationship between the variables, and
relying instead on assessing the ranking dependence, it eventually finds how well
the variables relationship can be described using a monotonic function.

At first, the xi and yi samples are converted to ranks rg xi and rg yi respectively.
Then, by using the Pearson’s coefficient definition, the correlation between the ranked
variables is computed with the following formula:

rs =
cov(rgX, rgY)

σrgX σrgY

where cov(rgX, rgY) is the covariance of the rank variables and σrgX , σrgY is the stan-
dard deviation of rgX and rgY respectively. In the special case where all n ranks are
distinct integers, the formula is simplified to:

rs = 1−
6 ∑ d2

i
n(n2 − 1)

= 1− 6 ∑ (rg(Xi)− rg(Yi))

n(n2 − 1)

Using the Spearman’s rho coefficient, both the strength and the direction of non-
linear relationships can be measured. This leads, however, to lower correlation coef-
ficient values [16].

Core Voltage - Hardware Events Correlation

Figure 5.4 shows the calculated Spearman’s correlation coefficient, between hard-
ware event and core voltage samples, for every workload. We observe the follow-
ing:

• Although, many workloads such as bwaves, xalanbmk, omnetpp, h264ref and
bzip2 had very strong linear correlation on some events, the strength of the
non-linear correlation is pretty weak. In most of these workloads, the core
voltage fluctuates significantly but not very often.

• Some workloads, such as gamess, gobmk and povray which experience fluc-
tuations of constant range (albeit not very large), maintain almost the same
correlation strength and direction.
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FIGURE 5.4: Spearman’s rs correlation coefficient for each hardware
event and workload
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• For the rest of the workloads, the Spearman’s coefficient value is smaller (in
absolute value) than the Pearson’s one. In few cases, e.g. libquantum, soplex
mcf, the opposite seems to happen, though these values are almost equal to
zero anyways.

5.2.3 Cross-workload Correlation Coefficients Distribution

Boxplots are a graphical method for presenting the distribution of numerical data,
through their quartiles. The data inside the second (i.e. Q2) and the third (i.e. Q3)
quartile are represented with a rectangle, and the ones inside the lower (i.e. Q1) and
upper (i.e. Q4) quartiles are shown with vertically lines (whiskers). Any samples
located outside of the lower and upper quartiles (i.e. outliers) are plotted as individ-
ual points. The horizontal (orange in our plots) line and the triangular (green) point,
which are placed inside the rectangle denote the median and the mean value of the
distribution, respectively.

Figure 5.5 shows the boxplots for the Pearson’s r and the Spearman’s rs coefficient
distribution for the HLM dataset, across all workloads. We make the following ob-
servations:

• Person’s r distribution exhibits larger variance than the Spearman’s one, while
there is no case of strong correlation for the latter. Furthermore, there are sig-
nificantly less outliers in the Spearman’s plot, which translates to fewer occa-
sions of moderate correlation. Thus, the relationship between the hardware
events and the core voltage seems to be more linear in nature, than non-linear.

• In both boxplots, the coefficient distributions have medians (and means) close
to zero, with the exception of IPC, MEM_LOAD_RETIRED and RETIRING hardware
events. In addition, the Q2 and Q3 quartiles of the distributions are concen-
trated between −0.25 and 0.25. This means that on average, there is a weak
correlation between each hardware event and the core voltage. Nevertheless,
there are a few cases of moderate (or even strong) correlation, especially for
the Pearson’s r.

• The coefficient distributions are evenly spread around the zero, in most cases.
Therefore, the correlation direction can be either positive or negative, depend-
ing on the selected workload. This poses a challenge for estimating the core
voltage of a single workload, if there is no knowledge of its behavior.

In the next chapter, we will see how supervised machine learning models cope with
estimating the core voltage of a workload.
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FIGURE 5.5: Boxplots of the Linear (top) and Non-Linear (bottom)
Correlation Coefficient Distribution



39

Chapter 6

Estimating CPU Core Voltage

In Chapter 5, we explored the relationship between individual hardware events with
core voltage, using a statistical method (i.e. correlation analysis). Having observed
weak correlation in most workloads, and strong in some, we extend our analysis
by using multiple variables in conjunction, with the end goal of estimating the CPU
core voltage at every point in time. For that purpose, various statistical and machine
learning (ML) techniques are employed, such as linear regression, random forests
along with the more modern artificial neural networks (ANN). We pay particular
attention to properly train the models, by pre-processing data before feeding them
into our models. Finally, the predictive power of the trained models is also validated
using cross-validated techniques.

6.1 Supervised Machine Learning Algorithms

Based on our previous workload profiling and the data we gathered, which contain
both the hardware events and the core voltage for each point in time, it is possible
to leverage supervised learning techniques to create prediction models. Supervised
learning is defined as the task of learning a function that maps an input to an output,
based on input-output pairs [42]. Each such pair (or sample) consists of many input
values (also known as features, which are typically formulated as a vector, and a
single output value, which is the expected / correct target value. In our case, the
core voltage is the output value and the rest of the hardware events can be used as
inputs.

In order for the supervised models to learn that function, the available data are split
in two sets: the training set and the test / validation set. During the training phase
the labelled training set (i.e. input-output pairs) is given as input to the model,
which analyses it and eventually infers a mapping function. This same function is
then used by the model to predict the output values for the input vectors of the
unseen, validation set. Hopefully, if the learned function fits the data "reasonably"
well, the model can give acceptable output value predictions (i.e. close to the correct
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ones) for unseen input values. Researchers refer to this last step as model validation
and is explained in detail later on.

Since our prediction value is a continuous value, we use regression models. Fur-
thermore, due to the large number of hardware events on our datasets, we present
here only models that can cope with high-dimensional input vectors. This includes
models that either have the inherent property of selecting the features which best
contribute to their accuracy (e.g. decision trees), or models that can be combined
with efficient techniques that implicitly eliminate the use of all features (e.g. L2 reg-
ularization with ANN).

Although there are plenty of dimensionality reduction techniques, such as the Prin-
cipal Component Analysis (PCA) [22] along with its variations, none of these meth-
ods gave better accuracy results in our experiments, than the ones presented here.
The same holds as well for the offline feature selection methods which are based on
statistical tests, such as Greedy Forward Selection or Backward Elimination [20].

In the following paragraphs, we present an introduction to the fundamental charac-
teristics of each regression model.

6.1.1 Linear Models

On linear regression models, it is expected that the unknown (dependent) variable
can be expressed as a linear combination of many known (independent) variables.
The generalized equation linear regression is:

ŷ(w, x) = w0 + w1x1 + ... + wpxp = wwwTxxx

where ŷ(w, x) is the predicted value, www = (w0, w1, ..., wn) are computed model co-
efficients and xxx = (x1, x2, ..., xn) are the independent variables. w0 is also called
intercept, and defines the predicted value if the input x vector is zero.

Standard linear regression models aim to find the coefficient vector www such that the
residual sum of squares between the correct outputs from the dataset, and the values
predicted by linear approximation, is minimized. In math terms, if X ∈ RNxM is
a matrix, where N and M is the number of samples and features respectively, the
function to be minimized is:

minw||Xwww− yyy||22

where yyy = (y1, y2, ..., yn) are the correct output values and ||...||2 is the Euclidean or
L2 norm. This function is called objective function and is usually different for each
machine learning algorithm.
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One of the major drawbacks of the standard linear regression model is that it as-
sumes that known variables are independent of each other. However, this is not true
for bzip2 workload, as it can be clearly seen from the hardware events signature
presented in Figure 5.1 (at section 5.1. The same can be said for the hardware events
behavior of other workloads, even though we do not actually visualize their behav-
ior. This means that it is possible to predict the value of one variable from the values
of multiple others used in the same model.

The phenomenon described above is known as multicollinearity and, when it is
present, it leads to large variance of the predicted variable, as www values tend to have
bigger values. One common and efficient way to address this problem is to impose
a penalty on the size (or/and the number) of model coefficient values w.

Lasso

Least Absolute Shrinkage and Selection Operator (LASSO) is a regression analysis
method that can entirely drop features, if this will lead to more accurate predictions
[62]. This is achieved using a L1 regularization term that imposes sparsity among
the coefficients w of the model. The objective function of Lasso is the following:

minw
1

2N
||Xw− y||22 + λ||w||21

The λ ≥ 0 parameter controls the amount of shrinkage. As the value of λ gets larger,
the model becomes more robust to collinearity. Prediction models produced using
LASSO have generally fewer variables, which usually translates to lower variance
and better model accuracy to unknown samples.

Elastic Net

Elastic net is a generalization of LASSO, as it combines the L1 penalty from LASSO
with an L2 penalty[69]. In cases of high correlation among features, LASSO arbitrar-
ily selects one and ignores the others. The addition of an L2 regularization term in
elastic net allows for a compromise between fewer and better selected variables in
the end model [45]. The generalized objective function is:

minw
1

2N
||Xw− y||22 + λ1||w||21 + λ2||w||22

where both λ1 and λ2 control the coefficient size shrinkage, but only λ1 imposes
coefficient sparsity. One can easily see that LASSO is a special case of elastic net, for
λ1 = λ and λ2 = 0.
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6.1.2 Tree-based Methods

Tree-based methods are non-parametric supervised learning methods that involve
segmentation of the prediction space into a number of non-overlapping regions,
which are formed using a set of decision rules inferred from the input data features.
Usually, the tree methods work top-down by choosing, at each, step a variable /
feature that "best" splits the set of items [48]. Therefore, the features perceived as
contributing ones by the tree are chosen, while the rest are ignored. This property of
in-built feature selection, is crucial for our datasets.

Being a non-parametric method, trees are also able to capture non-linear interactions
between inputs and target values. Unfortunately, non-linear models are more vul-
nerable to overfitting, which is phenomenon that arises when the model learns the
detail and the noise in the training set to the extent that it negatively impacts the
accuracy of the model to unseen / new data [5].

Even though tree-based methods are usually preferred for classification problems
(i.e. distinct number of output values), it is possible to support regression problems
by choosing an appropriate splitting metric. Both classification and regression trees,
however, use the same concept of node impurity, which is a measure of homogene-
ity of the target values at a specific tree node.

Decision Tree (CART algorithm)

Classification and Regression Tree (CART) algorithm builds a binary tree, where
each root node best splits the tree node with the goal of maximizing the information
gain among all possible splits [4]. A small set of rules is present in each tree node,
which determines the next node (i.e. child node) on the path to the leaf nodes. The
leaf nodes of the CART tree contain a single output value ŷ which is the used for the
prediction.

CART algorithm uses the Variance Reduction metric to evaluate the quality of split
at each step (i.e. impurity function), when the target variable is continuous:

IV =
1
N

N

∑
i=1

(yi − ȳ)2 where ȳ =
1
N

N

∑
i=1

yi

The information gain is defined as the difference between the parent node impurity
and the weighted sum of the two child node impurities [48]. Mathematically, this
translates to:

IG(DDD, DDDle f t, DDDright) = IV(DDD)−
Nle f t

N
IV(DDDle f t)−

Nright

N
IV(DDDright)
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FIGURE 6.1: Random Forest ML algorithm visualization

where DDD is the dataset with N samples in the parent node, and DDDle f t and DDDright

are the datasets resulting from partitioning DDD, which have Nle f t and Nright samples
respectively. If the information gain value is maximized in each tree node, then the
decision tree makes better predictions. Finally, the above procedure stops when the
tree has reached its maximum width, which is a user-defined parameter given before
the training phase.

Random Forests

Random forests are one example of ensemble learning methods, which typically
combine multiple individual predictions from a number of base models to compute
the final prediction [27]. In this case, the base models are decision trees which have
been trained independently using a randomly selected subset of all features (with
the same CART algorithm). This allows for the construction of a diverse set of re-
gression trees that overcomes the overfit problem found in simple decision trees [21].

Figure 6.1 illustrates the structure of a random forest model. The input matrix X ∈
RNxM consists of N samples with M features each, and it is fed to each base model
(i.e. decision tree) independently. Note that the path from the root to the leaf varies
for each tree, as the node conditions are different. Eventually for every tree the path
arrives on a single leaf node. The final predicted value is just the average of all
individual leaf node values.

6.1.3 Artificial Neural Networks

Artificial Neural Networks (ANNs), or more simply neural networks, are compu-
tational systems of interconnected "neurons" that "learn" to perform tasks without
being explicitly programmed by a set of specific rules. Instead, they extract their
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knowledge by detecting patterns and associations in data, through a training phase.
In addition, they automatically generate new features by combining existing ones to
make more accurate predictions. This is achieved by simulating the learning behav-
ior of biological neural systems (e.g. animals’ brain), which they draw inspiration
from [23].

The artificial "neurons" that constitute an ANN, which have the role of processing
elements (PE), are connected with each other to collectively process the information.
These connections are also called edges or arcs. This is where the power of ANNs
comes from. In a typical neural network there can be hundreds of such compu-
tational units, which can be connected in various ways. The different organization
and connection of processing elements leads to diverse network architectures, which
eventually might be more suitable for more specific tasks (e.g. image recognition,
speech recognition, etc.)

Figure 6.2 visualizes the basic components of each processing element. At first, each
PE is fed with weighted inputs (i.e. coefficients) from the units that connect to it.
Then these input weights are summed and fed into the activation function and a
single output value is produced, which is then passed to the next units. The choice
of the activation function, which introduces non-linearity to the network, can greatly
affect the behavior and the accuracy of the model.

FIGURE 6.2: Components of a neural network processing element

An ANN is organized in layers that contain many processing elements. Tradition-
ally a connection between two processing units exists if these belong to different
layers. However, more modern neural network architectures allow for self-feedback
connections. At the very least, each ANN is composed by the following layers:

• Input layer – The features of each sample are fed directly into the input layer.
The number of processing elements in this layer is usually equal to the number
of features, as each unit receives a single value (i.e feature). By being the first
layer of the ANN, there are no actual computations performed in these nodes
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as the only purpose of input layer is to pass the sample values to the next
(hidden) layers.

• Hidden layer(s) – In these layers the actual "learning" process takes place, as
the values are transformed. Depending on the ANN architecture, there can
be a single or multiple hidden layers. In any case, the input layer values are
fed into the processing units of the first hidden layer. Then, as described pre-
viously, the weighted sum is computed and it is passed over the activation
function to produce a single value. The resulting value is propagated to either
the next hidden layer, if there is one, or the output layer.

• Output layer – This is the last layer of the neural network and where the final
prediction value is formulated. This layer may contain one unit, in cases of
binary classification and regression, or multiple, in case of multi-label classi-
fication. Furthermore, for regression problems the transformed value of this
unique output unit is not passed through the activation function.

During training, edge coefficients are optimized to minimize the prediction error.
For that purpose, ANNs use an optimization function, which aims at finding the
optimal edge coefficient values with as few iterations as possible. A very common
choice is the stochastic gradient descent [49], or any of its modern variants [17, 36].
In order for the optimization function to properly adjust the coefficients, it is crucial
to know how good are the predictions of the network. For that purpose, a loss
function is employed, which quantifies the cost of a misprediction. The larger the
loss function value, the larger the error between the correct value and the predicted
one.

More specifically, the following iterative procedure is followed:

• At first, a forward pass of the network is made, using a single sample to make
the prediction. This means that an input vector is fed to the neural network and
propagates through the PEs, layer by layer, until eventually reaching the out-
put layer. There, the final prediction value of the network is computed. Then,
the error between the network prediction and the correct value is calculated,
using the provided loss function.

• Once the prediction error is known, a backwards pass of the network is per-
formed, starting from the output layer. Then, the error of each PE is computed,
which reflects its contribution to the final prediction value. These values are
then used by the backpropagation algorithm [52] to derive the gradient of the
loss function. Finally, the gradient values are fed into the optimization algo-
rithm, which adjusts the weight coefficients. Hopefully, the new coefficients
will give better predictions.

Latest advances in hardware made it possible to feed multiple samples simultane-
ously (i.e. mini-batches) to the network during the forward pass phase. By using
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multiple samples, a potentially single noisy sample will not harm the weight adjust-
ment, as new coefficients will be computed based on the average prediction error
of the whole batch. This technique is called batch normalization [34] and uses a
modified version of gradient descent, which leads to slower but more steady con-
vergence.

Multi-Layer Perceptron

A multi-layer perceptron (MLP) is a class of feedforward neural network, as there
are no backwards connections between the processing elements [21]. An MLP is
one of the simplest structures of ANNs that are still used today. MLPs typically
consist of fully-connected layers and can have one or more hidden layers. A fully-
connected network means that each processing unit that belongs to a layer connects
to all units of the next layer. When an MLP consists of two or more hidden layers
and the processing elements use non-linear activation functions, then the network
can be proven to be a universal function approximator [11].

FIGURE 6.3: Visualization of a multi-layer perceptron with two hid-
den layers

Figure 6.3 shows an MLP network with two hidden layers. Note that in contrast
to what is shown in the figure, the number of processing elements on each hidden
layer can be different.

MLPs can be used for both classification and regression. In classification problems,
each processing element uses a non-linear activation function. In regression prob-
lems, however, where a continuous value shall be predicted, the output layer pro-
cessing elements do not use an activation function.
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FIGURE 6.4: Unrolled recurrent neural network

Long Short-Term Memory (LSTM) Networks

Before diving into Long Short Term Memory (LSTM) networks, we discuss Recur-
rent Neural Networks (RNN). Recurrent neural network is a class of ANNs which
is able to model dynamic temporal behavior. In contrast to feedfordward neural
networks, RNNs can use their internal memory to process arbitrary sequences of
inputs. An RNN uses a chain-like structure, where the input of a processing unit
depends on the value of the previous input value. Figure 6.4 shows the organization
of the processing elements of an RNN. They can be thought of multiple copies of the
same network, where each one passes a "message" to the next network.

An LSTM network is a special type of RNN, which was introduced to mitigate one
major RNN drawback [28]. Due to their design, RNNs experience poor performance
when there are long-term dependencies on the data. This is partly caused by the
vanishing gradient problem [46], which makes it difficult to effectively update the
coefficients of the first layers as the network becomes deeper. LSTMs have been
carefully architectured to avoid this problem, as they consist of memory units that
can store more information compared to RNNs. More specifically, each LSTM cell
consists of the following gates:

• Forget gate, which decides what information from the previous cell is worth
remembering and forgets what is irrelevant.

• Input gate, which selectively updates the cell states depending on the values
of the input data.

• Output gate, which decides which part of the cell state is going to be propa-
gated to the next cell.

LSTMs have been successfully used in a wide variety of problems that utilize time-
series data, since these cells remember important events over arbitrary large time
intervals. In the scope of this thesis, we are going to evaluate their performance to
predict the value of the latest sample of CPU core voltage using multiple hardware
event measurements from previous samples, too.
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6.2 Data Pre-processing

Before feeding (training and testing) data as input to each model, it is vital to perform
the following pre-processing steps to acquire better estimation accuracy.

6.2.1 Data Balancing

Both HLM and AM datasets consist of samples from many workloads. The exe-
cution time of each workload, however, is different and ranges from 23 seconds to
10 minutes. Therefore, the number of samples taken for each workload varies. In
order to not be biased towards the workloads that run for longer time periods, we
ought to balance the dataset samples. Different approaches have been introduced to
tackle this problem, such as generating synthetic samples [9], or penalizing machine
learning models to make them pay more attention to minority classes [2].

Unfortunately, these approaches cannot be effectively used in our case, since they
primarily address classification problems (not regression ones). Hence, we decided
to resample the dataset to balance workload classes. This is achieved by under-
sampling the workloads with more samples and, at the same time, over-sampling
those with less. More specifically:

• We calculate the average number of samples over all workloads.

• For the workloads that have more samples than the mean, we randomly drop
samples (i.e under-sampling) until this number is equal to the mean.

• For the workloads that have less samples than the mean, we randomly dupli-
cate samples (i.e over-sampling) until this number is equal to the mean.

By following this process, we end up with equal sized profiles for each workload.
Figure 6.5 shows how many samples are dropped (orange bar) or duplicated (green
bar) for each workload.
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6.2.2 Data Normalization

Data normalization is a very common and often necessary data pre-processing step.
Many machine learning algorithms behave significantly better if all input features
are scaled to the same range, as comparisons between different features are fair. Two
methods are well known for scaling data:

• Normalization, which scales all feature values to range [0, 1]

• Standardization, which transforms all feature values to have zero mean and
unit variance

In our experiments, standardization proved to give better results. Given a feature
value x, then the standardized xnew value is:

xnew =
x− µ

σ

where µ and σ are the mean and standard deviation of feature values, respectively.
It is worth noting that in order to avoid adding bias to the models, we utilize only
the training data to calculate µ and σ values.

6.3 Model Parameters

In this section we summarize the parameters used for training the models. For the
linear and the tree-based models, we used the following parameters:

• Lasso: λ1 is set to 1.0

• Elastic Net: λ1 is set to 1.0 and λ2 to 0.5

• Decision Tree: The decision tree height is set to 4, as larger values lead to
overfitting for our dataset. The number of decision rules per branch is set to√

M, where M is the number of features.

• Random Forest: Each tree has the same parameters as a single decision tree.
The final value is computed by taking the average value of 8 separate trees,
which were trained on random subset of our training data subset.

6.3.1 Neural Networks

Activation Function

As described previously, the activation function defines the output of a single pro-
cessing unit. Therefore, its choice can greatly affect the behavior of the neural net-
work. Many different functions have been proposed over the years (e.g. sigmoid,
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tanh), yet the most popular of all is the Rectified Linear Unit (ReLU) [24]. ReLU
was introduced to effectively tackle the vanishing gradients problem, which was
observed when sigmoid or tanh were used. Mathematically, it is defined as:

f (x) =

{
0 if x < 0
x if x ≥ 0

Using a ReLU activation function also has computational benefits, as the computa-
tion of exponentials on sigmnoid or tanh is expensive. This resulted in faster net-
work training times.

Optimization method

We choose the Adam optimization algorithm [36], which is a widely-used modern
variant of the classical stochastic gradient descent method. Instead of using a single
learning rate (α parameter) for all features, as stochastic gradient descent does, it
maintains a single parameter for each network weight (coefficient) and separately
adjusts their values. This modification greatly improves performance and makes it
ideal candidate for problems with many features. For our evaluation we use the
default parameters, presented in the original paper, which are α = 1e− 3, β1 = 0.9,
β2 = 0.999.

Regularization

Regularization is a technique that is used to control the capacity of neural networks
to prevent overfitting. Similar to the Lasso and Elastic Net models, a regularization
term is added to network weights. In the case of an L2 term, the magnitude of
all parameters is penalized. On the contrary, the use of an L1 term has a property
that it leads the weight vectors to become sparse during optimization (i.e. use a
subset of input features). It is also possible to utilize both regularization terms on
the same network. Especially for neural networks, L2 regularization is expected to
give superior performance over L1.

Nonetheless, we experimented with L2 values of 0.01, 0.05, 0.1 and various L1 values
ranging from 0.01 to 1. In the majority of our tests, however, using just L2 regular-
ization gave better results than the combined L1, L2 regularization.

The architecture of both MLP and LSTM networks consist of two hidden layers
with 128 processing units each. For the MLP network the inputs belong to the same
interval as the core voltage value. In contrast, the LSTM is fed with hardware events
from the last 4 intervals in order to explore if previous interval info could result in
better accuracy.
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6.4 Model Evaluation

6.4.1 Cross-validation

Cross-validation, or out-of-sample testing, is any statistical method that can be used
to evaluate the performance of a machine learning model on unseen data. It is fre-
quently used for prediction tasks to get an insight of how the trained model will
generalize in practice on an independent dataset. Typically, one iteration of cross-
validation consists of reserving a part of the dataset, training the model with the rest
of the dataset, and finally, evaluating its accuracy using the reserved part. Common
problems in case of bad model performance are overfitting and selection bias [6].

Training set
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FIGURE 6.6: 10-Fold Cross-Validation Procedure Visualization

To evaluate our models we utilized the k-fold cross-validation procedure, which
consists of the following steps:

1. Shuffle the samples of the entire training set randomly

2. Split the shuffled training set into k folds (or groups)

3. For each such group:

• Pull this group out of the training set

• Train a new instance of the model with the rest of the training set

• Test model performance using the group that was taken out

• Evaluate model performance by computing its prediction error

4. Calculate the overall cross-validation error

Figure 6.6 visualizes the whole procedure and shows the formula for computing the
final cross-validation error. This error term can be effectively utilized as a robust
performance metric of the trained model. In our experiments we set k = 10, which
is commonly used, as its produced error term does not suffer either from excessively
high bias, or from very high variance [35].
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6.4.2 Loss Function

Mean Square Error (MSE) is the single most popular loss function for measuring
accuracy on regression problems. It measures the average magnitude of the errors
in a set of predictions, as it computes the average of squared differences between
prediction and actual observation:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2

where N is the number of samples, yi and ŷi are the actual and predicted value,
respectively. Taking the average squared errors has some interesting implications
for MSE. Since the errors are squared before they are averaged, the MSE gives a
relatively high weight to large errors, which is desirable in our case.

6.5 Core Voltage Estimation Results

Instead of using MSE to quantify how good our models estimate the core voltage
value, we will use the Root Mean Square Error (RMSE), which has the same units
as the quantity being estimated. Figure 6.7 presents the estimation error for each
ML model on both HLM and AM datasets. Since we are evaluating performance
through error, lower is better in this case. The baseline error, which originates from
always predicting the same average core voltage value, is ∼ 25 millivolts on both
datasets.
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FIGURE 6.7: Voltage estimation accuracy of ML models

Note that for the case of the AM dataset no error bars are shown for the neural
network models. Despite our best efforts and experimentation with a wide variety
of L1 and L2 regularization terms, we were unable to acquire acceptable prediction
accuracy with any of the tested parameter values.

Now, focusing on the plots themselves, we make the following observations:
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• LASSO, Random forest and MLP perform the best, as the estimation error is
lower than that of their counterparts. From these three, MLP achieves the best
accuracy, while the accuracy of LASSO and Random Forest is very close. It
is worth noting, however, that the training phase of MLP took considerably
longer time (i.e. ∼ 20x) than the training phase of the other two.

• The performance of Elastic Net is really bad, considering that it is a general-
ization of LASSO. The same can be observed about the LSTM network perfor-
mance, which also experiences large variance in its predictions.

• The performance of the models trained on AM dataset is on par with the per-
formance of the ones trained on the HLM dataset. Therefore, monitoring a
large number of very specific hardware events does not lead to better predic-
tions, and thus the high-level metrics should be preferred.

When reviewing which hardware events were selected by our ML models, we ob-
served that power events were dominating. On both linear and tree-based models,
these events were preferred over all others, and thus, they were given very large
coefficient values. This should come as no surprise, as there is a direct physical rela-
tionship between power consumption and core voltage value.

Nonetheless, we wanted to explore if it would be possible to estimate the core volt-
age value, using solely performance events, and how these models would perform.
Figure 6.8 shows the accuracy of our ML models, when power-related features are
not used as inputs. Since the dataset output values do not change when we drop
certain features, the baseline is the same as previously.
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FIGURE 6.8: Voltage estimation accuracy of ML models
(no power events)

We make the following observations:

• Their is a clear distinction among the different ML models, as the neural net-
works perform the best, tree-based are in the middle, while linear models per-
form the worst. In this case, Elastic Net accuracy is on par with the LASSO
model.
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FIGURE 6.9: Core voltage estimation of LASSO, Random Forest and
MLP models on bzip2 workload
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• In contrast to the previous evaluation where we utilized the power events,
LSTM networks seem to have slightly better prediction accuracy. However,
they still require about 5x more time to be trained and take about 2x longer to
make the predictions than MLP, which makes them unappealing. MLP has the
same prediction error, yet more stable behavior across multiple folds.

• The linear models trained on the AM dataset perform somewhat better those
trained on HLM one. Surprisingly, the opposite true for the tree-based model.
However, again we argue that it is not worth monitoring all hardware events,
as these cannot be effectively used to derive better prediction models.

Figure 6.9 visually compares the LASSO, Random Forest and MLP model predic-
tions, when they are trained without power events on bzip2 workload. The blue
line represents the actual (i.e. measured) core voltage value, while the orange line
the estimated one. The x-axis represents the samples taken every 100ms, while the
y-axis shows the core voltage value. LASSO model completely misses the voltage
fluctuations, while the Random Forest does a better job at capturing this behavior,
however at the cost of increased noise. MLP manages to closely follow the voltage
signature on the entire execution, with the addition of minor ripples during periods
of stable voltage behavior.

Finally, since our experiments show that MLP and LSTM are undoubtedly the best
prediction models, we decided to try to optimize their performance by fine-tuning
the L2 regularization term during the training phase. Figure 6.10 shows the estima-
tion error of these models for various L2 values (i.e. 0.1, 0.05, 0.01), when the HLM
dataset was given as input.
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FIGURE 6.10: MLP estimation error with various L2 regularization
term values for HLM dataset

For every case, training the models with L2 = 0.05 leads to better accuracy. Fig-
ure 6.11 shows the quality of estimations of an MLP model, trained with the above
parameter value, on numerous workloads. Again, the x-axis represents the samples
taken every 100ms, while the y-axis is the core voltage value. For most workloads
(i.e. bwaves, bzip2, gcc, gobmk, h264ref, omnetpp, sjeng) the model captures core
voltage behavior with acceptable accuracy. On dealII and gamess workloads, the
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very rapid peaks cannot be captured efficiently, yet the predictions remain within
the range of these fluctuations. Unfortunately, the model does not give good predic-
tions for the xalanbmk workload, despite its relative stable behavior. This might be
due to the simultaneous change of the all hardware events in the same direction (i.e.
correlation among all hardware events), which in turn negatively impacts the model
predictions.
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FIGURE 6.11: Voltage estimations made by MLP model trained with
L2 = 0.05, on a subset of SPEC CPU2006. X-axis represents samples

taken every 100ms, while y-axis is the core voltage value
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Chapter 7

Online Program Phase Detection

At run-time, programs exhibit varying behavior as they may alternate between peri-
ods of different execution characteristics. Depending on the application, these may
last from few milli-seconds to many seconds or even minutes. Periods where appli-
cation behavior is relative stable, with regard to some metric, either program-specific
or quantifying the interaction with hardware, can be defined as program phases.
Note that we are not referring to actual code segments, but rather to temporal mi-
croarchitectural phases, which are formed due to the application interaction with
the hardware. Researchers have been trying to capture, understand and character-
ize these phases, in an attempt to further unleash opportunities for software and
hardware optimizations [15].

Online phase detection methods have been developed, in order to enable adaptive
system optimizations. These methods are applied at application run-time, and by
utilizing profiling techniques they are able to detect phase changes very fast. Ex-
amples of dynamic phase-guided optimizations include smart cache resizing [1],
more efficient thread scheduling on heterogeneous multi-processor systems [60], im-
proved memory access times by predicting data locality [55] and faster program
simulations [56]. Note that phase detection methods do not literally detect applica-
tion phase changes. Instead they detect variations in application behavior which are
assumed to be the outcome of a phase change [15].

In this chapter, we introduce a novel online phase detection mechanism, which ex-
ploits automatic, hardware-guided core voltage and frequency adjustments of Intel
SpeedShift DVFS technology. By monitoring the core voltage and productive fre-
quency values, we are able to effectively detect phase changes with very low run-
time overhead. We evaluate our tool phase detection accuracy and we perform a
comparison with a state-of-the-art tool (ScarPhase [54]).
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FIGURE 7.1: Framework for detecting program phases

7.1 Framework

The majority of the proposed online program phase detection methods are based
on the same abstract framework. Figure 7.1 illustrates the general workflow, which
typically consists of the following steps:

• At first, the method monitors application execution using low-level metrics,
for a certain time period or until a certain count of occurences of some hard-
ware event. Usually methods collect many samples during an interval, in order
to better capture the dynamic characteristics of the application.

• The raw values are then transformed into a more meaningful representation
(e.g. matrix, vector, histogram), which encapsulates the knowledge gathered
from all samples during this interval. This is also known as the execution pro-
file. This allows for easier comparison of pplication behavior among different
intervals.

• The execution profile of the latest interval is compared against other execution
profiles. Depending on the actual method, these may be only the most recent
ones or may originate from the entire past execution. This process produces
a similarity value for each such pair, which represents the similarity between
the two execution profiles. The larger this value, the more similar the two
profiles are.

• The respective similarity values are then passed to a similarity analyzer. At
the very least, the similarity analyzer checks these values against a static thresh-
old and decides whether a phase change has occurred or not. Again, depend-
ing on the method, the analyzer may dynamically change the value of the
threshold, based on statistics gathered from previous intervals.

The above process is repeated until the application terminates. Note that we omitted
the last step of the similarity analyzer, which is the phase classification. This step is
optional but is commonly found on online phase detection methods. More specifi-
cally, it is possible for the similarity analyzer to keep track of past execution profiles
along with phase identifiers. Doing so, it can also determine on which phase the last
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FIGURE 7.2: CPI variability during execution of bzip2 and dealII
workloads

profile belongs to, even if the profiles of that phase have been sampled way back
in the past. This extra logic leads to phase classification methods, which are really
practical for programs that contain small and repetitive phases.

The majority of online phase detection and classification methods aim at detecting
non-overlapping phases which consist of fixed-size intervals. However, instead of
using time to define the size of intervals (e.g. each interval lasts for 10 or 100 mil-
liseconds), the research community often opts for using the number of executed in-
structions. Early studies used intervals of 100 million instructions, which is still used
today in order to simplify the comparison of different methods.

Earlier we defined program phases as periods of relative stable behavior with re-
gard to some metric. Most researchers agree that Cycles per Instructions (CPI) can
be effectively used to describe the "real" program phases (i.e. ground truth) [15],
especially when these phases will be exploited for reducing the time of simulating
application behavior. However, CPI should not be considered as the universal metric
that "defines" program phases, as this greatly depends on the relevant optimization
itself. Figure 7.2 shows how CPI changes over time for bzip2 and dealII. Note that
even though CPI values can vary greatly, there are intervals of relative stability. Al-
though CPI might be a good metric for sequential applications, it should never be
used for detecting phases in multithreaded applications, as shown in [47], due to its
large variability on loaded SMT systems.
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7.2 Execution Frequency Vectors

Numerous studies have shown that there is a strong correlation between the code
executed and the behavior of the application. Hence many program classification
techniques have employed execution frequency vectors [58, 56, 15]. These vectors
typically capture which code segments are being executed during an interval. Ear-
lier studies [15] used individual instructions, which were hashed into a large bit vec-
tor (i.e. Extended Instruction Pointer Vector – EIPV). By computing the Manhattan
Distance:

D(V1, V2) =
N

∑
i=1
|V1(i)−V2(i)|

between execution frequency vectors V1 and V2, one could find how similar (or
rather dissimilar) were these execution profiles. Unfortunately though, as these vec-
tors get large, the storage requirements as well as comparison overheads are becom-
ing limiting.

In contrast to individual instructions, researchers in [56, 58] utilized Basic Block
Vectors (BBV), which capture code execution context at a coarser granularity than
plain instructions. Basic blocks are continuous code segments with no branches in,
except to the entry, and no branches out except at the exit [25]. Moreover, they
showed that hashing basic block addresses into a vector of just 32 counters is enough
for practical purposes. This can lead to reduced overheads due to the small size of
the vector. The similarity values are again obtained using the Manhattan Distance
between the BBVs.

Still, however, none of execution profiles is suitable for online phase classification, as
each individual executed instruction or each basic block, needs to be sampled. One
straightforward way to avoid this, is to collect sparse samples as discussed in [12].
In this study, an estimate of EIPV is computed, as instructions are collected using
stratified sampling. A more recent study [54] takes samples of branch addresses,
with the goal of approximating BBVs values. By leveraging modern performance
monitoring capabilities, such as Precise Event Based Sampling (PEBS), they demon-
strate that online phase classification is achievable with low runtime overhead and
good accuracy. Finally, they have open-sourced their tool ScarPhase, which we will
use as baseline in our evaluation.

In the following paragraphs, we describe our approach, pointing out differences
between ours and previous work when needed.
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Metric # of Entries Lowest value Highest Value Bin Size
Core Voltage 32 962 mV 1080 mV 4 mV

Productive Frequency 64 0 MHz 3000 MHz 47 MHz

TABLE 7.1: Core voltage and productive frequency
histogram parameters

7.3 Our Approach

Instead on relying on the code section of the program that is being executed, we base
our approach on hardware core voltage and productive frequency measurements,
and we argue that they can be used, in most cases, to efficiently detect phase changes.

7.3.1 Sampling

Since the core voltage and productive frequency are updated every ∼ 1 millisecond,
we choose this value as our sampling frequency. For each interval of 100 million in-
structions, we take multiple samples that are stored in the memory. Note the num-
ber of samples taken depends on the time period that it takes for the processor to
execute 100M instructions. Therefore, the number can significantly vary among dif-
ferent workloads as well as between different code sections of the same workload.
For the majority of the workloads in our evaluation each interval consists from 10 to
20 samples, while there are cases of individual intervals with over 100 samples.

7.3.2 Execution Profile

Once the interval ends, these samples are combined to create two histograms, one
for each metric. The core voltage at the fixed 3.0GHz maximum stock frequency
ranges from ∼ 970 to ∼ 1080 millivolts, while the productive frequency ranges from
0 to 3000 MHz. For every sample we find the correct histogram bin, which are of
equal widths (or sizes). The number of histograms bins for the core voltage dis-
tribution is set to 32, which is big enough to capture even small (i.e. up to 4mV)
fluctuations. However, due to the larger range of productive frequency values, we
use a larger histogram of 64 bins, which achieves a more accurate representation. In
our experiements, more bins did not led to negligible improvements. Table 7.1 sum-
marizes the parameters for both histograms. Finally, as the number of samples per
interval varies, histograms are normalized (i.e. divided by the number of samples).

7.3.3 Histogram Similarity

The next step is to calculate the similarity between two histograms, in order to decide
weather a new phase has began. One idea is to reuse the Manhattan Distance that
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was previously used in the BBVs, or some other popular distance metric (e.g. Eu-
clidean Distance). However, these metrics are agnostic of the overlapping between
two histograms. Therefore, we use the algorithm presented in [8], which computes
a distance between sets of measured values. This distance acts as a measure of dis-
similarity between the histograms. Its major advantage is that it takes into account
the similarity of both non-overlapping and overlapping parts of the distributions, in
contrast to traditional metrics.

input : Two normalized histograms H1, H2 of size N
output: The normalized histogram distance

1: pre f ixSum = 0
2: histDist = 0
3: for i = 0 to N − 1 do
4: pre f ixSum += (H1(i)− H2(i))
5: histDist += |pre f ixSum|
6: end for
7: return histDist/(N − 1)

Algorithm 1: Histogram Distance

Algorithm 1 shows the pseudo-code used for measuring the distance between two
histograms H1 and H2 of N bins. The distance represents the minimum number of
necessary bin element movements, in order to transform H1 to H2 (or vice-versa).
A movement is defined as the cost of moving 1 element from a bin to any of its
neighbours (i.e. left or right). Starting from left to right, the pre f ixSum variable
holds the bin elements difference for all previous bins. At each iteration, the number
of excessive bin elements that need to move to some bin further to the right, is added
to the total distance (i.e. histDist variable). Note that at the last bin, the pre f ixSum
value is equal to zero, hence to compute the normalized distance we divide by N − 1.
The time complexity of this algorithm is O(N), thus it has low-overhead and is well
suited for being used online.

To further understand this procedure, Figure 7.3 shows the histogram dissimilarity
that was calculated between histograms of consecutive intervals, which is visualized
using the blue line. Figure 7.3a (top) shows how the core voltage values of the bzip2

workload change over time, which are plotted using black boxes. These boxes rep-
resent the histogram bins. The indices of the bins are shown at the left y-axis. The
darker the color of a box, the more sampled values belong to that bin. Note how
large the dissimilarity values get, when a big shift in core voltage values occurs. We
can make the same observations for the bottom figure, which presents the behavior
of the productive frequency values for the astar workload, over time.

Since we should end up with a single value for representing the "distance" between
different execution profiles, we compute the maximum between the core voltage and



Chapter 7. Online Program Phase Detection 64

vid
histogram distance

0 10000 20000 30000 40000 50000 60000

Time (milliseconds)

5

10

15

20

25

30

H
is

to
g
ra

m
 B

in

0

0.05

0.1

0.15

0.2

0.25

0.3

H
isto

g
ra

m
 D

ista
n
c
e

(A) Core Voltage histograms for bzip2 workload

pfreq
histogram distance

0.000e+0 2.000e+4 4.000e+4 6.000e+4 8.000e+4 1.000e+5 1.200e+5

Time (milliseconds)

20

30

40

50

60

H
is

to
g
ra

m
 B

in

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

H
isto

g
ra

m
 D

ista
n
c
e

(B) Productive Frequency histograms for astar workload

FIGURE 7.3: Histogram dissimilarity values between consecutive in-
terval. Figure 7.3a shows the core voltage histograms for the bzip2
workload, while Figure 7.3b shows the productive frequency ones for

the astar workload
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productive frequency dissimilarity values, obtained from comparing the respective
histograms. This allows to detect phase changes even when only one of the two
measured metrics exhibits some variation.

7.3.4 Phase Change Detection and Classification

Now that we can efficiently quantify the dissimilarity among different execution
profiles, we focus on how to exploit this information to decide when a phase change
has occurred. The most simple approach is to compare the dissimilarity value with
a pre-defined fixed threshold value. Unless the former is larger than the latter, we
assume no change of program phase. In general, the larger the threshold, the fewer
program phases are discovered but (usually) of longer lengths. For our experiments
we set this threshold equal to 0.25, as this value achieves a good trade-off between
phase length and phase count. It is also possible to adaptively adjust this threshold,
by observing the fluctuations of core voltage and productive frequency values, yet
we leave this addition as future work.

Execution 
Profile

Dist < Threshold

Choose this 
cluster

Find cluster 
centroids which 

have distance less 
than threshold

NOYES

Calculate distance 
from last interval 

cluster

Choose the one 
with the minimum 

distance

Update cluster 
centroid

Clusters 
exist?

YES

Create new 
cluster

NO

Classify interval 
to this phase

FIGURE 7.4: Phase classification algorithm

Apart from detecting phase changes, we
are interested in grouping similar ex-
ecution profiles into a single labelled
cluster, which we interpret as an indi-
vidual program phase. For this purpose
we utilize a leader-follower clustering
scheme [18], which also allows for fast
online clustering. For each cluster, we
maintain its centroid, in the spirit of the
popular k-means clustering algorithm
[40].

The algorithm is visualized in figure 7.4
and works as follows:

1. At first, we calculate the dissimi-
larity between the current execu-
tion profile and the centroid of
the cluster where the previous ex-
ecution profile was classified to.
If the profiles are similar enough
(i.e. based on the threshold value),
we classify this execution profile
to the same cluster / phase.

2. In the opposite case, we find all clusters, whose distance from the current exe-
cution profile is below threshold. If no such cluster exists, we create a new one
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and we set its centroid to this execution profile. Otherwise, we select the one
with the minimum distance and we classify this profile to that cluster.

Therefore, at the end of the program execution, we end up with multiple program
phases that show similar core voltage and productive frequency characteristics.

7.4 Integrating application context

Nevertheless, there are cases when the executed code from different parts of the pro-
gram results in similar core voltage and productive frequency behavior. Although
this is often not an issue when detecting phase changes, classifying different code
sections into the same program phase is sometimes not desirable (e.g. when opti-
mizing for memory locality). To this end, we develop a complementary mechanism
that captures application context by sampling the instruction pointer (IP).

We sample IPs at the same interval (i.e. ∼ 1ms) used the rest of the metrics. IP val-
ues can be accessed from within the kernel (as described in the next section). These
samples should then be combined into a single vector, which represents applica-
tion execution profile during the last interval. However, since IP samples represent
memory addresses, they can take huge values up to 264 (for a 64-bit system).

Researchers have used Random Projection (RP) [3] techniques in order to reduce the
values range. By looking at the binary representation of the addresses, they discard
enough bits from random positions to obtain a smaller value on a predefined range.
For example a 40-bit address can be "transformed" to a 5-bit one by dropping 35-
bits, so that it can fit into a 25 = 32 positions vector. Even though many different
values can still end up on the same vector positions, for real-world purposes differ-
ent phases can usually be distinguished.

1 0 1 1 0 0 1

1 0 1

1⊕0 1⊕1 0⊕0⊕1

Instruction Pointer Address

Vector Index

FIGURE 7.5: Spatial-aware projection

Despite the wide utilization of Random
Projection, we experiment with an ad-
hoc algorithm with the end goal of min-
imizing the spatial information loss. In-
stead of dropping random bits, we par-
tition the binary representation of the
IPs into equal-sized groups and we se-
lect a single bit from each group. In par-
ticular, the algorithm performs the fol-
lowing steps:

1. We retrieve the first and the last
address of the program .text sec-
tion and we compute the instruc-
tion pointer range.
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2. Depending on this range and the desired vector size, we calculate the size
of each group. When possible we use equal-sized groups, otherwise bigger
groups end up on the least significant bits.

3. The elements of each group are XORed together to produce a single value.
Finally, these values are concatenated to derive the vector index.

Figure 7.5 illustrates the previous procedure, where a 7-bit address is reduced to
a 3-bit one, which can be safely inserted at any position of a vector with 23 = 8
elements.

To better understand how the integration of the application context can alter the
phase classification results, Figure 7.6 presents on which phase the IP values of the
astar workload, where classified to. Keep in mind that IP values that are close with
each other, should be classified to the same phase, which is denoted by the same
color in these images. On the left image, the application context is not taken into
account, while or the right one, it does. We can clearly see that on the left image, the
"pink" phase consists of two very different code segments, while on the right one,
these segments were classified to different phases (i.e. green and pink phases).

(A) Before (B) After

FIGURE 7.6: Classification results before (left) and after (right) inte-
grating application context into the method, for astar. Same color

denotes the same program phase

7.5 Implementation

Our phase detection and classification tool consists of two main components: a ker-
nel module and a user-space component, which were developed with the goal of
minimizing the overhead on the execution time of the running workload.
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(A) Layout of IA32_FIXED_CTR_CTRL MSR

(B) Layout of IA32_PERF_GLOBAL_CTRL MSR

FIGURE 7.7: Layout of MSRs used by the kernel module

The kernel module is primarily responsible for collecting the actual core voltage and
productive frequency measurements. For that purpose, the module spawns a kernel
thread (i.e. sampling thread), which periodically reads these values. Note that we
reused the code that was developed for extending perf_events (check chapter 3),
where this sampling process is explained in greater detail.

In addition to these values, the program instruction pointer also needs to be re-
trieved. This is achieved by accessing the regs field of the appropriate task_struct

structure that belongs to the monitored program. However, these values are not
updated in real-time as the program executes, but rather at every context-switch.
Therefore, we bind both the kernel module and the program to the same core. Now,
since both programs run on the same core, a context-switch is inevitable between the
two, which allows us to read the correct updated values.

Since the interval length is defined in terms of the number of executed instructions
(i.e. 100M instructions), we need a mechanism that sends a notification when an
interval ends. Fortunately, this functionality is provided by PMUs located on each
processor core. We can configure this mechanism to raise a Non-Maskable Interrupt
(NMI) once 100M instructions have finished executing on this core. Then, we capture
this interrupt from our kernel module, and we can safely switch to the user-space
component for decision making.

More specifically, the following steps are needed to correctly setup the PMUs for
raising an interrupt and for counting the total retired instructions and core cycles, as
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Name Domain Name Domain
astar AI / Path finding bwaves Fluid Dynamics
bzip2 Compression dealII Finite Element Analysis
gcc C Compiler mcf Combinatorial Optimization
perlbench Programming Language wrf Weather Forecasting
xalancbmk XML Processing

TABLE 7.2: Subset of SPEC CPU2006 workloads used for phase detec-
tion

documented in [31]. Please recall that these two metrics are also needed for calculat-
ing CPI, which is used for deriving the ground-truth for program phases:

1. Since the PMU sends an interrupt when the respective 64-bit counter over-
flows, we initially set the value of the counter that measures retired instruc-
tions (i.e. IA32_FIXED_CTR0) equal to 264 − 100M.

2. To enable the event counting for the fixed-function performance events only
for user-space, we set bits 1 (for retired instructions) and 5 (for core cycles) on
the IA32_FIXED_CTR_CTRL MSR (layout shown on figure 7.7a). Furthermore, in
order to raise the interrupt, the 3rd bit is set as well.

3. To start the counting procedure of retired instructions and the counting of core
cycles we set bits 32 and 33, respectively, of the IA32_PERF_GLOBAL_CTRL MSR
(layout shown on figure 7.7b).

This process is repeated at the beginning of each new interval. Once the interval
ends, the samples should be accessible to the user-space component for processing.
This is accomplished by allocating a shared-memory segment inside the kernel. The
user-space component can effectively gain access to this memory segment, using the
nmap system call. The use of shared memory is one of the most efficient, in terms of
performance, methods of passing data between kernel-space and userland, since no
copying is performed (i.e. zero-copy).

For the most part, the user-space component is blocked and waits for the kernel
module to provide a notification for a new interval. Once this happens, it checks if
the program is still running, and if so performs the actual phase classification us-
ing the steps described in the previous Sections. Finally, once program execution is
finished, it exports the results to a .csv file. Figure 7.8 illustrates the entire commu-
nication and processing procedure for both components.

7.6 Evaluation

In this Section we evaluate the performance of our phase classification tool (i.e.
VPF) in terms of phase homogeneity. We use a subset of workloads from the SPEC
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CPU2006, which have shown the most interesting program phase behavior. Table 7.2
lists these workloads.

In order to quantify phase homogeneity, we calculate the CPI variance of all samples
that were classified in the same phase. For this purpose, we use the Coefficient of
Variation (CoV) [57] that measures the dispersion of a distribution (CPI distribution
in our case):

cv =
σ

µ

where σ is the standard deviation and µ is the mean value of the samples, respec-
tively. For each program phase we compute the CoV and then we take the average
across all phases. If a program phase consists of a single interval, then we penalize
this phase by setting its CoV equal to the CoV of the entire program execution (i.e.
CPI variation across all samples).

We compare the performance of our tool, with (i.e. VPF-IP) or without (i.e. VPF)
integrating the monitored program application context, against the state-of-the-art
[54] ScarPhase. The phase detection threshold was set to 0.25 in our case and to 0.45
for ScarPhase, to approximately match the number of detected phases.
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FIGURE 7.9: Homogeneity comparison of program phases discovered

Figure 7.9 graphically shows the results for all tools and configurations. For bzip2,
dealII and wrf ScarPhase performs better, while for gcc and xalanbmk VPF does.
Both tools achieve the same level of phase homogeneity for bwaves and perlbench.
An interesting case is the astar workload, where the integration of the application
context led to a huge improvement that managed to match ScarPhase performance.
By taking a closer look on Figure 7.3b at around 60 seconds, we can see the reason
behind this improvement. Even though, we can see that the between 44 and 60
seconds the productive frequency distribution is more spread out, while between 60
and 80 seconds is narrower, yet the histogram distance line never exceeds the 0.25
threshold, and thus failing at detecting a phase change.
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Finally, we compared the runtime overhead of both tools. On the same configuration
(i.e. ScarPhase threshold equal to 0.45, while VPF threshold equal to 0.25), ScarPhase
has a 2.5% runtime overhead, which translates to 25ms per second. For the VPF, we
measured both the kernel module and the user-space component overhead. The
overhead of the former is ∼ 0.25% and the one of the latter is ∼ 0.9%, for a total
of 1.15% or 11.5ms per second. Thus the runtime overhead of VPF is less than half
compared with that of ScarPhase.
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Chapter 8

Conclusions

In this thesis, firstly, we explored the relationship between profiled hardware events
that model the workload behavior with the CPU core voltage values, as these are
adjusted by the SpeedShift DVFS mechanism on the Skylake architecture. Using
correlation analysis we showed that different workloads can have widely different
impact on the strength and the direction of the correlation. Surprisingly, we found
that for the same hardware event the correlation direction can be both positive or
negative, depending on the actual workload.

Next, we showed that it is possible to use machine learning models to get satisfying
estimations on the CPU core voltage of a workload, at any time point. This holds
true even when training the models using solely performance events of the same
workload. However, due to the diversity of the workload behavior, it was not pos-
sible to achieve decent accuracy on unseen workloads. Furthermore, we observed
that the utilization of hardware event values from previous intervals, did not lead
to significant accuracy gains. On possible direction for future work, is to investigate
the performance of online machine learning methods on unseen workloads.

Lastly, we showed that CPU core voltage and productive frequency values can re-
veal a great deal of information regarding the temporal architectural phases of a
program. Moreover, the integration of application context to account for different
code phases, resulted in better phase for the majority of our workloads. Since we
design and developed our tool based the assumption of serial workloads, one could
try to generalize our approach and experiment with multi-threaded workloads.
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